0 VR
. 1" 4

Porting Nouveau to Tegra K1

How NVIDIA became a Nouveau contributor

Alexandre Courbot, NVIDIA
FOSDEM 2015



The Story So Far...

In 2014 NVIDIA released the Tegra
K1 SoC

e 32 bit quad-core or 64-bit dual
core ARM

e 192-cores low-power Kepler
GPU (OpenGL 4.3, CUDA)

e Desktop Kepler already
supported by Nouveau

2014/02/01: NVIDIA to contribute
Nouveau GK20A support

SANVIDIA.



(Incomplete) Credits

NVIDIANS:

Thierry Reding Ken Adams
Terje Bergstrom Lauri Peltonen
Gregory Roth Stephen Warren
Vince Hsu Mark Zhang

... and the whole Nouveau community!

<ANVIDIA.



Outline

GK20A/Nouveau overview

Nouveau bringup on Tegra K1
Challenges with memory management
Engines layout on Tegra

User-space (Mesa)

<ANVIDIA.



GK20A Overview

Fully-featured Kepler part with unified shaders and per-
process virtualization of the GPU

e Each process gets its own GPU context
e Memory virtualized per-context

e Graphics jobs submitted by user-space using
pushbuffers

<ANVIDIA.



Nouveau Architecture

Supports GPUs from Riva TNT (1998) to Maxwell (2014)

e Extremely modular
e GPU literally an assembling of engines and sub-devices

Supporting GK20A means

e Finding/writing engines/subdevs for the chip
e Allowing Nouveau to run on Tegra

<ANVIDIA.



Platform Bus Support

Nouveau expects the GPU to be on a PCl bus

e Provides GPU registers & BARs |/0O addresses
e pci map page () used to map system RAM to GPU

Abstract the bus and add platform bus support

e |/0O addresses provided by Device Tree
e Replace deprecated pci map page () with DMA API

—Nouveau can be instantiated from PCIl or Device Tree

<ANVIDIA.



No VBIOS

Video BIOS provides useful information (e.g. voltage
tables for DVFS) and also performs critical initialization

e Alternate way to provide power information via per-
chip static tables
e Perform necessary initialization for GK20A in-driver

<ANVIDIA.



No VRAM

GK20A has no video memory of its own

e GPU is a direct client of Tegra’s Memory Controller
e Free and direct access to system memory
e Huge consequences for the driver

<ANVIDIA.



Address Translation on Desktop Kepler

I —
o _II-

-lll- I

PCle Bus

- | N

<ANVIDIA.



Nouveau Memory Model

e 2 allocation targets:
e VRAM
e TT (system memory mapped to GPU)

e Target specified at buffer creation time
e (Coherency maintained thanks to BAR1 (for VRAM) and
PCle (for TT)

<ANVIDIA.



Address Translation on Mobile Kepler

e NI

.
.
.
.
.
.
.
.
.
. . .
. . .
. . .
.
py . .
. . .
. . .
.
. . .
- - |

<ANVIDIA.



Mobile Kepler Memory Model

e No more dedicated video memory

e All allocations in system memory
e Not a carve out!

e No coherency between CPU and GPU
e Must flush/invalidate CPU cache ourselves

<ANVIDIA.



Living Without VRAM

How to handle VRAM allocations?
e Emulate VRAM?

e Sub-optimal memory management

e Dismiss VRAM allocations altogether?
e Requires more changes in the kernel & Mesa

Decision taken to not use a RAM device for GK20A

e Better reflects reality, simplifies memory management
e User-space needs to be aware of no-VRAM devices

<ANVIDIA.



Using IOMMU

|IOMMU introduces a second level of address translation

e Useful to “flatten” context objects
e Instance blocks, PGTs, etc.

e Also allows to maximize large page usage on the GPU
e |IOMMU more efficient than GPU MMU

o |

oo, R
- e |

i |

<ANVIDIA.



CPU/GPU Coherency

Handled transparently by PCle for desktop
No such thing on Tegra: explicitly flush/invalidate

buffer objects (DMA API)

New flag for objects that must always be coherent
e Fences, GPFIFOs

ARM makes things more difficult

e A memory page cannot be mapped twice with different
attributes

e Kernel already maps lowmem (first 760MB) cached

e Cannot remap this memory with uncached attribute

<ANVIDIA.



Multiple CPU Mappings Coherency

How to address the coherency issue?

e Use GPU path when writing coherent buffers
e PRAMIN window (slow)
e BAR1 (relatively scarce resource)

e Allocate coherent buffers using DMA API
e dma_alloc_coherent() can fix the lowmem mapping
e end up with permanent kernel mapping

<ANVIDIA.



Engines Layout

e GeForce GTX 680 (GK104) provides a graphics engine
(GR), display controllers, 3 copy engines, video
decoder, video encoder, VRAM, ...

e GK20A only includes a graphics engine
e Other functions already provided by different Tegra IPs

Discrete GPU Tegra

Nouveau TegraDRM

System RAM

<ANVIDIA.



Engines Layout

PRIME support is critical for this setup
e Export required to display GPU buffers

Tegra K1 perfect fit for render-nodes

e cardO (tegradrm) is the display device
e renderD128 (nhouveau) is the render device

— requires support at application or Mesa level

<ANVIDIA.



Who Should Provide Memory?

The first driver in the chain?
A neutral allocator? (e.g. ION)

System RAM Why should each driver have
its own allocator?

How to handle different
engines capabilities?

<ANVIDIA.



User-space (Mesa) changes

~25 LoC changed to recognize GK20A
... and Mesa fully works

Some work required to avoid VRAM allocations

Some more work to integrate seamlessly with tegradrm?

<ANVIDIA.



Conclusion

GK20A close to work out-of-the-box with Nouveau
Remaining tasks:

e Firmware distribution
e A few more kernel and Mesa patches pending

Great experience working with the Nouveau community

e Plans to keep contributing support for future Tegra
SoCs

<ANVIDIA.



Thank you!

https://github.com/NVIDIA/tegra-nouveau-rootfs

<ANVIDIA.


https://github.com/NVIDIA/tegra-nouveau-rootfs
https://github.com/NVIDIA/tegra-nouveau-rootfs

