
Porting Nouveau to Tegra K1
How NVIDIA became a Nouveau contributor

Alexandre Courbot, NVIDIA
FOSDEM 2015



In 2014 NVIDIA released the Tegra 
K1 SoC
● 32 bit quad-core or 64-bit dual 

core ARM
● 192-cores low-power Kepler 

GPU (OpenGL 4.3, CUDA)
● Desktop Kepler already 

supported by Nouveau

2014/02/01: NVIDIA to contribute 
Nouveau GK20A support

The Story So Far...



(Incomplete) Credits

NVIDIANs:
Thierry Reding
Terje Bergström
Gregory Roth
Vince Hsu

Ken Adams
Lauri Peltonen
Stephen Warren
Mark Zhang

… and the whole Nouveau community!



GK20A/Nouveau overview

Nouveau bringup on Tegra K1

Challenges with memory management

Engines layout on Tegra

User-space (Mesa)

Outline



GK20A Overview

Fully-featured Kepler part with unified shaders and per-
process virtualization of the GPU

● Each process gets its own GPU context

● Memory virtualized per-context

● Graphics jobs submitted by user-space using 
pushbuffers



Nouveau Architecture

Supports GPUs from Riva TNT (1998) to Maxwell (2014)
● Extremely modular
● GPU literally an assembling of engines and sub-devices

Supporting GK20A means
● Finding/writing engines/subdevs for the chip
● Allowing Nouveau to run on Tegra



Platform Bus Support

Nouveau expects the GPU to be on a PCI bus
● Provides GPU registers & BARs I/O addresses
● pci_map_page() used to map system RAM to GPU

Abstract the bus and add platform bus support
● I/O addresses provided by Device Tree
● Replace deprecated pci_map_page() with DMA API
→Nouveau can be instantiated from PCI or Device Tree



No VBIOS

Video BIOS provides useful information (e.g. voltage 
tables for DVFS) and also performs critical initialization
● Alternate way to provide power information via per-

chip static tables
● Perform necessary initialization for GK20A in-driver



No VRAM

GK20A has no video memory of its own
● GPU is a direct client of Tegra’s Memory Controller
● Free and direct access to system memory
● Huge consequences for the driver



Address Translation on Desktop Kepler

System RAM BAR1

CPU VA

CPU PA

System RAM

GPU VA

Video RAM

PCIe Bus



Nouveau Memory Model

● 2 allocation targets:
● VRAM
● TT (system memory mapped to GPU)

● Target specified at buffer creation time
● Coherency maintained thanks to BAR1 (for VRAM) and 

PCIe (for TT)



Address Translation on Mobile Kepler

System RAM

CPU VA

CPU PA

GPU VA

System RAM

IOMMU VA

BAR1



Mobile Kepler Memory Model

● No more dedicated video memory
● All allocations in system memory

● Not a carve out!
● No coherency between CPU and GPU

● Must flush/invalidate CPU cache ourselves



Living Without VRAM

How to handle VRAM allocations?
● Emulate VRAM?

● Sub-optimal memory management
● Dismiss VRAM allocations altogether?

● Requires more changes in the kernel & Mesa

Decision taken to not use a RAM device for GK20A
● Better reflects reality, simplifies memory management
● User-space needs to be aware of no-VRAM devices



IOMMU introduces a second level of address translation
● Useful to “flatten” context objects

● Instance blocks, PGTs, etc.
● Also allows to maximize large page usage on the GPU

● IOMMU more efficient than GPU MMU

Using IOMMU

GPU VA

RAM

IOMMU VA

GPU VA

RAM



CPU/GPU Coherency

● Handled transparently by PCIe for desktop
● No such thing on Tegra: explicitly flush/invalidate 

buffer objects (DMA API)
● New flag for objects that must always be coherent

● Fences, GPFIFOs
● ARM makes things more difficult

● A memory page cannot be mapped twice with different 
attributes

● Kernel already maps lowmem (first 760MB) cached
● Cannot remap this memory with uncached attribute



Multiple CPU Mappings Coherency

How to address the coherency issue?
● Use GPU path when writing coherent buffers

● PRAMIN window (slow)
● BAR1 (relatively scarce resource)

● Allocate coherent buffers using DMA API
● dma_alloc_coherent() can fix the lowmem mapping
● end up with permanent kernel mapping



Engines Layout

Nouveau

VRAM

GR DISPENC ...

Discrete GPU

tegra-mc

V4L2 TegraDRMNouveau

System RAM

GR DISPENC

Tegra

● GeForce GTX 680 (GK104) provides a graphics engine 
(GR), display controllers, 3 copy engines, video 
decoder, video encoder, VRAM, ... 

● GK20A only includes a graphics engine
● Other functions already provided by different Tegra IPs



Engines Layout

PRIME support is critical for this setup
● Export required to display GPU buffers

Tegra K1 perfect fit for render-nodes
● card0 (tegradrm) is the display device
● renderD128 (nouveau) is the render device
→ requires support at application or Mesa level



Who Should Provide Memory?

The first driver in the chain?

A neutral allocator? (e.g. ION)

Why should each driver have 
its own allocator?

How to handle different 
engines capabilities?

tegra-mc

System RAM

Nouveau

GR

TegraDRM

DISP

V4L2

ENC

V4L2

CAM



User-space (Mesa) changes

~25 LoC changed to recognize GK20A
… and Mesa fully works

Some work required to avoid VRAM allocations

Some more work to integrate seamlessly with tegradrm?



Conclusion

GK20A close to work out-of-the-box with Nouveau
Remaining tasks:
● Firmware distribution
● A few more kernel and Mesa patches pending

Great experience working with the Nouveau community
● Plans to keep contributing support for future Tegra 

SoCs



Thank you!

https://github.com/NVIDIA/tegra-nouveau-rootfs

https://github.com/NVIDIA/tegra-nouveau-rootfs
https://github.com/NVIDIA/tegra-nouveau-rootfs

