

seL4 Present and Future

@GernotHeiser & Team NICTA and UNSW Australia

What is seL4?

seL4: The latest (and most advanced) member of the L4 microkernel family – 20 years of history and experience

What is seL4?

seL4: The world's most (only?)
secure OS kernel – provably!

seL4: Mathematical *Proof* of Security

FOSDEM'15

What seL4 is NOT: An Operating System

What's Different to Other L4 Microkernels?

Design for isolation: No memory allocation in the kernel

High-Assurance System on seL4

DARPA HACMS Program:

- Provable vehicle safety
- "Red Team" must not be able to divert vehicle

Boeing Unmanned Little Bird (AH-6) **Deployment Vehicle**

SMACCM Research Vehicle Architecture

©2015 Gernot Heiser, NICTA

Architecting System-Level Security/Safety

Current NICTA Work on seL4

- High-performance multicore support
 - Release ETA: few months (ARM, x86)
- Full support for virtualisation extensions
 - Release ETA: few months (ARM, x86)
- 64-bit support
 - Release ETA: few month (x86), ??? (ARM64)
- Mechanisms for eliminating timing channels
 - ETA: 2015 (ARM and x86)
- Temporal isolation and mixed-criticality scheduling
 - ETA: 2015 (ARM and x86)
- Hardware failure resilience (DMR/TMR on multicore)
 - ETA: 2015 (ARM and x86)

What Else Is Cooking?

- Aim: Cost reduction by automation and abstraction
 - Present seL4 cost: \$400/SLOC, high-assurance, high-performance
 - Other "high" assurance: \$1,000/SLOC, no proof, poor performance
 - Low assurance (Pistachio): \$200/SLOC, no proof, high performance
- Device driver synthesis
 - Synthesise driver code from hardware and OS interface specs
 - works already for simple devices
- Code and proof co-generation
 - High-level spec in DSL describes logic, generate C code and proofs
 - File systems as case study
- Type- and memory-safe high-level languages
 - Do verification cheaper in HLL semantics
 - Requires verified HLL run-time and compilers

seL4 Ecosystem: Kernel Development

How Can YOU Contribute?

- Libraries presently extremely rudimentary
 - POSIX! ...
- Platform ports
 - Especially popular ARM boards: Tegra, RK3188, Beaglebone, ...
- Drivers!!!!!!
 - Very few available ATM
- Network stacks and file systems
 - Presently have lwIP, incomplete functionality
- Tools
 - Have component system (CAmkES), glue generators
- Languages
 - Core C++ support just released, lacks std template lib
 - Haskell presently in progress (with Galois) stay tuned
 - Python would be awesome!

Why NOT Use seL4?

- Very rudimentary programming environment!
 - Fair enough
 - You can help to fix this!
- I like unsafe/insecure systems!
 - Ok, go shoot yourself
- I like the thrill of danger!
 - Like getting sued for building a critical system on outdated technology
- Actually, I want to use seL4!
 - Right answer ;-)

http://seL4.systems

gernot@nicta.com.au http://microkerneldude.wordpress.com @GernotHeiser