
RFNoC
Network on Chip for Easy FPGA Development

Matt Ettus
<matt@ettus.com>

Ettus Research

2015



USRP FPGA Capability

Gen 1 Gen 2 Gen 3 E300 Gen 3 X310
FPGA Cyclone I Spartan 3 Zynq Kintex 7

Logic Cells 12K 53K 85K 406K
Memory 26KB 252KB 560KB 3180KB

Multipliers NONE! 126 220 1540
Clock Rate 64 MHz 100 MHz 200 MHz 250 MHz

Total RF BW 8 MHz 50 MHz 128 MHz 640 MHz
Free space none ~50% ~75% 85+%



The Challenges

I FPGA computational capability scales with Moore’s Law
but our ability to use it does not

I Domain experts in algorithms not necessarily skilled in
FPGA design, networking issues, verilog, or the internals
of a particular radio system

I Poor reusability of computational elements across multiple
designs due in part to lack of standard interfaces

I Difficulty migrating CPU code to FPGA
I FPGA reconfigurability is on a very slow time scale

I Seconds to load a configuration
I Minutes to hours to compile a new configuration
I Hours to months to develop a new design

I Difficulty scaling designs beyond one FPGA
I Highly interconnected large designs make it difficult to

meet timing requirements and slow down compile cycles



The Opportunities

I Massive new FPGAs allow a lot of freedom
I Don’t have to design like a “rewritable ASIC”

I Considering and valuing composability of blocks and code
reuse early in the process can lead to large productivity
gains

I Be able to take advantage of high level design languages
and tools

I can provide a better way for algorithm experts to express
computation than in Verilog or VHDL

I MyHDL, System Verilog, LabVIEW FPGA, VivadoHLS,
Coregen, Simulink, etc.



Traditional FPGA SDR Data Flow



The Vision



RF NoC



RFNoC in GNU Radio



RF NoC Principles

I Distributed asynchronous implementation of Kahn Process
Networks

I Protocol has some similarities to Rapid IO
I Very simple Interface/API – 64-bit AXI FIFO in and out
I All communication is packet-oriented over FIFO interfaces
I Data (baseband samples, symbols, packets, etc.) and

Control are carried over the same path
I Data and Control carried in the same packet format
I All endpoints are created equal

I Any-to-any communications
I No “host” is necessary

I All communication is flow-controlled (both fine and coarse)
I Each block can be in its own clock domain



Radio Blocks

I Contain everything which must happen in the sample clock
domain

I All precise timekeeping and sequencing
I All control of radio hardware
I All sample-rate DSP (DUC, DDC, IQ Balance, most sample

rate conversion)

I Produces and consumes packets of baseband samples at
a fixed rate



Computation Engines

I Can perform arbitrary processing on both data and control
I Generic FIR engine
I FFT machine
I OFDM sync
I Turbo decoding
I Frequency hopping state machine
I AGC state machine
I Protocol processing
I Upper layer stacks
I CPU (i.e. Microblaze)
I Large memory buffers
I etc.



External Interfaces

I Packets entering or leaving FPGA via
I 1G/10G Ethernet
I PCIe
I USB3
I AXI interfaces to ARM and System RAM in Zynq
I Adaptation layer to other processing paradigms (i.e.

massive multicore, GPU, etc.)

I Filters out non-RFNoC traffic and passes it to the control
processor

I e.g. ARP, Ping
I Out-of-band control like setting up the network router, misc.

hardware controls, etc.
I Network diagnostics

I Strips off other protocol layers and compresses headers on
ingress, reverse operation on egress

I Maps RFNoC address to external protocol address (i.e.
MAC and IP addresses and UDP port)



Network Fabric

I Full crossbar to route packets between blocks
I Routing tables are loaded out of band by the control

processor, and are set up by the application
I All routing decisions are made entirely based on the first

line of every packet
I No packet is allowed into the crossbar until it is complete

I Prevents slow packets from causing congestion
I Ensures data flows through at full rate

I Flow control assures that any packet entering the router
can also exit because there is buffer space guaranteed on
the other side



Simple MIMO Example



Massively Scalable MIMO



Status

I Working implementation of radios, network fabric, external
interfaces, and flow control across multiple products with a
single code base

I A number of interesting computation engines have been
implemented

I Automatic setup and routing based on a GNU Radio
flowgraph

I Automatically builds FPGA image with user selected
computation engines

I To Do
I Implement more interesting computation engines
I Demonstrate multi-FPGA flowgraphs
I Take advantage of partial reconfiguration
I Produce skeleton reference computation engines for other

design environments
I MyHDL, LabVIEW FPGA, Simulink, VivadoHLS, etc.

I Automatically migrate processing from host to computation
engines


