
QtQuick for Complex Applications
Concepts & Best Practices

Andreas Cord-Landwehr

February 1, 2015
FOSDEM, Bruxelles

Me = Andreas <CoLa> Cord-Landwehr
KDE developer since ≈ 4 years
doing stuff with QtQuick for ≈ 2 years
PhD student, doing “strange things” with networks and algorithmic game theory
. . . and this fall/after my PhD, one can hire me :)

This Talk. . .
1 will tell you/remind you what QtQuick is and why it is useful
2 gives walk-through important topics & techniques when working with QtQuick
3 has no live-coding, but an example:

https://github.com/cordlandwehr/example-fosdem-2015

4 is focused on people with ≈basic QtQuick knowledge
5 will cover:

the interplay of C++ code and QtQuick
the basic design patterns needed for using QtQuick
best practices for hybrid C++/QtQuick applications

6 is available on the FOSDEM website

Introduction
About Me
And About the Talk

2 QtQuick for Complex Applications / Andreas Cord-Landwehr

https://github.com/cordlandwehr/example-fosdem-2015

Me = Andreas <CoLa> Cord-Landwehr
KDE developer since ≈ 4 years
doing stuff with QtQuick for ≈ 2 years
PhD student, doing “strange things” with networks and algorithmic game theory
. . . and this fall/after my PhD, one can hire me :)

This Talk. . .
1 will tell you/remind you what QtQuick is and why it is useful
2 gives walk-through important topics & techniques when working with QtQuick
3 has no live-coding, but an example:

https://github.com/cordlandwehr/example-fosdem-2015

4 is focused on people with ≈basic QtQuick knowledge
5 will cover:

the interplay of C++ code and QtQuick
the basic design patterns needed for using QtQuick
best practices for hybrid C++/QtQuick applications

6 is available on the FOSDEM website

Introduction
About Me
And About the Talk

2 QtQuick for Complex Applications / Andreas Cord-Landwehr

https://github.com/cordlandwehr/example-fosdem-2015

1 QML = name of a declarative language that also allows imperative JavaScript
expressions

2 QtQuick = toolkit for QML, allowing to develop graphical interfaces

Further reading: https://doc.qt.io/qt-5/qmlapplications.html

Simple Code Example of QML Code
1 import QtQuick 2 .1
2 import QtQuick . Contro l s 1 . 3
3 import QtQuick . Layouts 1 .0
4
5 ApplicationWindow {
6 ToolBar {
7 RowLayout {
8 anchors . f i l l : parent
9 spac ing : 2

10 ToolButton { iconName : " ed i t - copy " }
11 ToolButton { iconName : " ed i t - paste " }
12 S l i d e r { Layout . f i l l W i d t h : t rue }
13 }
14 } }

Introduction
QtQuick 6= QML
Basic Notions

3 QtQuick for Complex Applications / Andreas Cord-Landwehr

https://doc.qt.io/qt-5/qmlapplications.html

QtWidgets: rock stable and sufficient for many use cases

discrete forms/pages, each containing static controls (known as widgets)
presenting new forms to user = new window/dialog that replaces current one
created in C++ (resp. language bindings) or by compiling XML files (UI-files)
common sets of widgets (along with theme) gives good graphical consistency
between apps with same toolkit

QtQuick: declarative and powerful

create interfaces by describing them (= declarative language)
make changes easier to understand for humans
(= animations instead of discrete changes)
do interface once for different form factors: touch, desktop
QtQuick enforces clear separation of UI and data

Introduction
QtWidgets or QtQuick?
Two Different Concepts

4 QtQuick for Complex Applications / Andreas Cord-Landwehr

QtWidgets: rock stable and sufficient for many use cases

discrete forms/pages, each containing static controls (known as widgets)
presenting new forms to user = new window/dialog that replaces current one
created in C++ (resp. language bindings) or by compiling XML files (UI-files)
common sets of widgets (along with theme) gives good graphical consistency
between apps with same toolkit

QtQuick: declarative and powerful

create interfaces by describing them (= declarative language)
make changes easier to understand for humans
(= animations instead of discrete changes)
do interface once for different form factors: touch, desktop
QtQuick enforces clear separation of UI and data

Introduction
QtWidgets or QtQuick?
Two Different Concepts

4 QtQuick for Complex Applications / Andreas Cord-Landwehr

This Talk’s Definition: Complex application ≈ something complex enough to spend
time setting up a build system.

Typical non-complex applications
plasmoids/desktop applets
mobile applications

Benefits of hybrid C++/QML applications
1 compared to QtWidget based UIs, allows much more flexibility
2 results in code that can be unit tested
3 much better performance (no need for tools like qtquickcompiler to speed-up JS)
4 your (modern) compiler helps discovering tons of issues

Introduction
How to Use QtQuick in a (complex) Application
My Notion of “Complex”

5 QtQuick for Complex Applications / Andreas Cord-Landwehr

Example: A Visual Box Placement Editor

(blue) whiteboard where we can place (yellow) boxes
list-view that displays all box-coordinates

Topics for the rest of this talk:
1 How to expose data to the QML engine?
2 How to write data back to the model?
3 How to combine QtQuick with QtWidgets?
4 Some Best-Practices for complex UIs?

Introduction
This Talk’s Example
Yeah, this example is actually non-complex. . .

6 QtQuick for Complex Applications / Andreas Cord-Landwehr

Model contains the data and its structure
View a container that displays the data

Delegate dictates how the data should appear in the view

In Our Example
Data = Boxes + BoxManager (C++)
Model = BoxModel (C++ with QML interfaces)
View = ListView (QML)
Delegate = Rectangles and Labels (QML)

Further Reading:
https://doc.qt.io/qt-5/qtquick-modelviewsdata-modelview.html

Exposing the Data
Models and Views in QtQuick
Implementation of the Proxy Pattern

7 QtQuick for Complex Applications / Andreas Cord-Landwehr

https://doc.qt.io/qt-5/qtquick-modelviewsdata-modelview.html

1 c l a s s Box : pub l i c QObject
2 {
3 Q_OBJECT
4 Q_PROPERTY(QPointF p o s i t i o n READ p o s i t i o n WRITE s e t P o s i t i o n
5 NOTIFY posit ionChanged)
6
7 pub l i c :
8 e x p l i c i t Box(QObject * parent = Q_NULLPTR) ;
9 ~Box () ;

10 QPointF p o s i t i o n () const ;
11 void s e t P o s i t i o n (const QPointF &p o s i t i o n) ;
12
13 Q_SIGNALS:
14 void posit ionChanged () ;
15
16 p r i v a t e :
17 Q_DISABLE_COPY(Box)
18 QPointF m_position ;
19 } ;

Exposing the Data
Models and Views in Qt Quick
How it is done in code: a Box (boring) (1/4)

8 QtQuick for Complex Applications / Andreas Cord-Landwehr

1 c l a s s BoxManager : pub l i c QObject
2 {
3 Q_OBJECT
4
5 pub l i c :
6 e x p l i c i t BoxManager (QObject * parent = Q_NULLPTR) ;
7 ~BoxManager () ;
8 Box * createBox () ;
9 void removeBox (Box *box) ;

10 QList <Box*> boxes () const ;
11
12 Q_SIGNALS:
13 void boxAdded () ;
14 void boxAboutToBeAdded (Box* , i n t) ;
15 void boxRemoved () ;
16 void boxAboutToBeRemoved (i n t) ;
17
18 p r i v a t e :
19 Q_DISABLE_COPY(BoxManager) ;
20 QList <Box*> m_boxes ;
21 } ;

Exposing the Data
Models and Views in QtQuick
How it is done in code: the BoxManager (mostly boring) (2/4)

9 QtQuick for Complex Applications / Andreas Cord-Landwehr

1 c l a s s BoxModel : pub l i c QAbstractListModel
2 {
3 Q_OBJECT
4 pub l i c :
5 enum boxRoles {
6 Pos i t i onRo l e = Qt : : UserRole + 1 ,
7 DataRole
8 } ;
9 [. . .]

10 v i r t u a l i n t rowCount (const QModelIndex &parent = QModelIndex ())
11 const Q_DECL_OVERRIDE;
12 v i r t u a l QVariant data (const QModelIndex &index ,
13 i n t r o l e = Qt : : Disp layRole) const Q_DECL_OVERRIDE;
14 v i r t u a l QHash< int , QByteArray > roleNames () const Q_DECL_OVERRIDE;
15 [. . .]
16 p r i v a t e Q_SLOTS:
17 void boxAboutToBeAdded (Box *box , i n t index) ;
18 void onBoxAdded () ;
19 void onBoxAboutToBeRemoved (i n t index) ;
20 void emitBoxChanged (i n t row) ;
21 [. . .]

Caution: important (yet boring) code was removed!

Exposing the Data
Models and Views in QtQuick
How it is done in code: the BoxModel (important!) (3/4)

10 QtQuick for Complex Applications / Andreas Cord-Landwehr

1 [. . .]
2 Repeater {
3 model : BoxModel {
4 boxManager : globalBoxManager
5 }
6 Rectangle {
7 width : 20 ; he ight : 20
8 c o l o r : " ye l low "
9 border . width : 2

10 property Box box : model . dataRole
11 x : box . p o s i t i o n . x
12 y : box . p o s i t i o n . y
13 }
14 }

Remaining Questions
1 how can we tell the engine about the globalBoxManager?
2 how can we tell the box manager when a new box shall be created?

Exposing the Data
Models and Views in QtQuick
How it is done in code: the UI code for the whiteboard (4/4)

11 QtQuick for Complex Applications / Andreas Cord-Landwehr

1 [. . .]
2 Repeater {
3 model : BoxModel {
4 boxManager : globalBoxManager
5 }
6 Rectangle {
7 width : 20 ; he ight : 20
8 c o l o r : " ye l low "
9 border . width : 2

10 property Box box : model . dataRole
11 x : box . p o s i t i o n . x
12 y : box . p o s i t i o n . y
13 }
14 }

Remaining Questions
1 how can we tell the engine about the globalBoxManager?
2 how can we tell the box manager when a new box shall be created?

Exposing the Data
Models and Views in QtQuick
How it is done in code: the UI code for the whiteboard (4/4)

11 QtQuick for Complex Applications / Andreas Cord-Landwehr

1 qmlRegisterType <BoxManager >(" org . kde . fosdemexample " , 1 , 0 , " BoxManager ") ;
2 qmlRegisterType <BoxModel >(" org . kde . fosdemexample " , 1 , 0 , " BoxModel ") ;
3 qmlRegisterType <Box >(" org . kde . fosdemexample " , 1 , 0 , "Box") ;

1 m_widget = new QQuickWidget ;
2 m_boxManager = new BoxManager ;
3
4 // r e g i s t e r box manager g l o b a l l y in QML Context
5 // s e t t h i s b e f o r e l oad ing the scene
6 m_widget - > rootContext () - > setContextProperty (" globalBoxManager " , m_boxManager

) ;
7 m_widget - > se tSource (QUrl : : f r omLoca lF i l e (" path/ to /my/qml/ Scene . qml ")) ;
8
9 // l i s t e n to context s i g n a l s

10 connect (m_widget - > rootObject () , SIGNAL(createBox (qrea l , q r e a l)) ,
11 th i s , SLOT(createBox (qrea l , q r e a l))) ;

Hence: root context must provide signal createBox(x,y)

Exposing the Data
Structure of a Hybrid C++/QML App
QtQuick Engine Lifting

12 QtQuick for Complex Applications / Andreas Cord-Landwehr

. . . hopefully :)

Exposing the Data
Live Demo of Example Application
Keep your Fingers Crossed

13 QtQuick for Complex Applications / Andreas Cord-Landwehr

There are two ways for accessing your (Q)Objects:
1 add an access role to your model for every property
2 provide “raw” access role and equip object with Q_PROPERTIES (← my choice)

Announce roles:
1 QHash< int , QByteArray > BoxModel : : roleNames () const {
2 QHash< int , QByteArray > r o l e s ;
3 r o l e s [DataRole] = " dataRole " ;
4 r e turn r o l e s ;
5 }

Provide access:
1 QVariant BoxModel : : data (const QModelIndex &index , i n t r o l e) const
2 { [. . .]
3 i f (! index . i s V a l i d () || index . row () >= m_boxManager - > boxes () . count ())
4 r e turn QVariant () ;
5 Box * const box = m_boxManager - > boxes () . at (index . row ()) ;
6 switch (r o l e) {
7 case DataRole :
8 r e turn QVariant : : fromValue <QObject * >(box) ;
9 case [. . .]

10 }
11 }

Best Practices
Working with Complex Objects
Data Access → Bypassing the Proxy Pattern

14 QtQuick for Complex Applications / Andreas Cord-Landwehr

Since Qt 5.3: QtQuickWidgets

provides a widget for displaying a QtQuick user interface → you can add QtQuick
in a QtWidget based UI
convenience wrapper for QQuickWindow which will automatically load and display
a QML scene

Note:
QQuickWidget disables the threaded render loop on all platforms
Qt 5.4 fixes a lot of issues

Further reading: http://doc.qt.io/qt-5/qquickwidget.html

Best Practices
Structure of a Hybrid C++/QML App
Mix with QtWidgets

15 QtQuick for Complex Applications / Andreas Cord-Landwehr

http://doc.qt.io/qt-5/qquickwidget.html

QtQuick allows a lot
fancy interfaces
better UI design experience
clear separation of logic and UI

. . . but requires discipline
1 Keep logic in C++ and unit test it
2 Keep file sizes moderate (rule of thumb: < 500 LOC)
3 Keep a common coding and naming style
→ “private” variable naming space, root ids. . .

4 for complex interactions: think about using state machines
→ without them, the editor functionality would not be maintainable in Rocs

Final Words
Wrapping-Up the Talk
Keep QML files maintainable

16 QtQuick for Complex Applications / Andreas Cord-Landwehr

Thank you for your attention!

Andreas Cord-Landwehr
E-mail: cordlandwehr@kde.org

mailto:cordlandwehr@kde.org

	Introduction
	Exposing the Data
	Best Practices
	Final Words

