PixelVault: Using GPUs for Securing
Cryptographic Operations

Motivation

e Secret keys may remain unencrypted in CPU
Registers, RAM, etc.
— Memory disclosure attacks
* Heartbleed
— DMA/Firewire attacks

— Physical attacks
* Cold-boot attacks

PixelVault Overview

Host

PLATI

TEXT CIPé%ﬁ;EXT

Graphics Card

.

* Runs encryption
securely outside CPU/
RAM

* Only on-chip memory
of GPU is used as
storage

* Secret keys are never
observed from host

Cryptographic Processing with GPUs

 GPU-accelerated SSL
— [CryptoGraphics, CT-RSA’05]
— [Harrison et al., Sec’08]
— [SSLShader, NSDI'11]

OpenSSL stub

* High-performance
e Cost-effective

Cryptographic Processing with GPUs

* GPU-accelerated SSL
— [CryptoGraphics, CT-RSA’05]
— [Harrison et al., Sec’08]
— [SSLShader, NSDI'11]

* High-performance
e Cost-effective

Can we also make it secure?
6

Implementation Challenges

e How to isolate GPU execution?

 Who holds the keys?

e Where is the code?

Implementation Challenges

e How to isolate GPU execution?

* Who holds the keys?

e Where is the code?

GPU as a coprocessor

* Typically handled by the host

— Load parameters, launch GPU program, transfer
data, etc.

* Not secure for our purposes
— Crypto keys have to be transferred every time

Autonomous GPU execution

* Force GPU program to run indefinitely
— i.e., using an infinite while loop

* GPUs are non-preemptive
— No other program can run at the same time

* We use a shared memory segment for
communication between the CPU and the
GPU

10

Shared Memory between CPU/GPU

* Page-locked memory

— Accessed by the GPU
directly, via DMA

— Cannot be swapped to
disk

Shared Memory Segment

* Processing requests are
l T issued through this
shared memory space

11

Shared Memory between CPU/GPU

OpenSSL stub

Shared Memory Segment

|

 GPU continuously
monitors the shared
space for new requests

12

Shared Memory between CPU/GPU

* When a new request is
available, it is
transferred to the

: memory space of the
‘ | GPU
REQUEST

msg#

offsets[msg#] pry Segment
keyIDs [msg#]

msg_buf[] T
v

13

Shared Memory between CPU/GPU

Shared Memory Segment

L]

REQUEST
msg#
offsets [msgit]

RESPONSE
msg#

03
ﬂ" offsets[msg#]

> | keyIDs [msg#]
enc_msg _buf[]

keyIDs [msgi]
msg_buf[]

* The request is
processed by the GPU

14

Shared Memory between CPU/GPU

* When processing is
finished, the host is

notified by setting the
response parameter
fields accordingly

RESPONSE

msg#
Shared Memo| °ffsets[msg#]

keyIDs [msgi]
l enc_msg_buf[]

15

Autonomous GPU execution

* Non-preemptive
execution

: : * Only the output block is
being written back to

host memory

Shared Memory Segment

| 4
input output
v |

P

non-preemptive exec

16

Implementation Challenges

e How to isolate GPU execution?

 Who holds the keys?

e Where is the code?

17

Who holds the keys?

4)

Global Memory

(Multiprocessor 2)
4 N\
CPU S
(Host)
- J sp || sp || sp || sp !/)

GPU
Multiprocessor 1
Shared
Memory | Cache)
 GPUs contain different memory hierarchies of ...
— different sizes, and ...

[} (Multiprocessor N)
Host Memory

sp | sp || sp || spP|
— different characteristics

Who holds the keys?

4 N
[Host Memory}

GPU

(Multiprocessor N

]

~

(Multiprocessor 2

- - N

e Multiprocessor 1

]

N e

. © are
Off-chip global memory. S Memory | m »
No protection; data can o \
be acquired by the CPU [5P][5P : [5P][5P])
directly. (sp) sp I [sp (5P
/

 GPUs contain different memory hierarchies of ...
— different sizes, and ...
— different characteristics

Who holds the keys?

GPU

N
: : Multiprocessor N
a8l On-chip memories

\ 2
Global Memory

'SP || sP || sPp || sP

N

S

. s

 GPUs contain different memory hierarchies of ...
— different sizes, and ...
— different characteristics

20

Who holds the keys?

\
Comparable with GPU
scratchpad RAM in other . N
. Multiprocessor N
architectures. (
N
Multiprocessor 2
3 >
Unfortunately, its contents E)
can be acquired by a g
subsequent GPU program. =
o »
} ’
k_/ /)

 GPUs contain different memory hierarchies of ...
— different sizes, and ...
— different characteristics

Who holds the keys?

\
GPU
(Multiprocessor N)
Many different data caches C : D
processor 2

(L1-L3, texture, constant).
Unfortunately, the data stored
there cannot be managed by
the programmer

J

 GPUs contain different memory hierarchies of ...

— different sizes, and ...
— different characteristics

22

Who holds the keys?

GPU

(Multiprocessor N

Reset to zero on each
GPU kernel execution.

Global Me

[SP][SP;[SP][SP]
- \[sp][sp)[sp][sp]/)

.

 GPUs contain different memory hierarchies of ...
— different sizes, and ...
— different characteristics

23

Keeping secrets on GPU registers

e Secret keys are loaded on GPU registers at an
early stage of the bootstrapping phase

— Remain there as long as the autonomous GPU
program is running

* Unfortunately, the number of available
registers in current GPU models is small

— Enough for a single/few secret keys, but what
about if we want to store more?

24

Support for an arbitrary number of keys

 We can use a separate KeyStore array that
holds an arbitrary number of secret keys

encrypted keys are

stored in GPU global each key is decrypted in registers
device memory: during encryption/decryption:
KeyStore GPU Registers File
Master
Key

copy to registers

| > SIS [pecedkey

25

Implementation Challenges

e How to isolate GPU execution?

* Who holds the keys?

e Where is the code?

mov.u32 #r2, 0;
setp.le.s32 ¥pl, *rl, %r2;
mov.s32 #rs, srd;

add.u32 #r6e, %ri, *rd;
f%pl bra $Lt_© 1282;
mov.s32 #rsé, Ar3;

xor.b32 #ri1e, %r7, %ro;

st.global.u8 [%r5+0], %rle;

add.u32?2 #%rs5, %rs, 1;
setp.ne.s32 kp2, %r5, %r

26

Where is the code?

* GPU code is initially stored in global device
memory for the GPU to execute it

— An adversary could replace it with a malicious
version

Global Device
Memory

mov.u32 %r2, o;
setp.le.s32 ¥pl, %rl, %r2;
mov.s32 #rs, ard;

add.u32 ¥re6, %rl, %rd;
fi*%pl bra $Lt & 1282;
mov.s32 #rgé, &r3;

xor.b32 ¥r10, ¥r7, ¥ro9;
st.global.uB [%r5+8], %rl;
add.u32 %r5, %r5, 1;
setp.ne.s32 ¥p2, %r5, &r

27

Prevent GPU code modification attacks

* Three levels of instruction caching (icache)
— 4KB, 8KB, and 32KB, respectively
— Hardware-managed

* Opportunity: Load the code to the icache, and
then erase it from global device memory

— The code runs indefinitely from the icache
— Not possible to be flushed or modified

PixelVault Crypto Suite

* Currently implemented algorithms
— AES-128
— RSA-1024

* Implemented completely using on-chip
memory (i.e. registers, scratchpad memory)

— The only data that is written back to global, off-
chip device memory is the output block

Throughput (Gbit/s)

AES-128 CBC Performance

] GpPU
[PixelVault
B PixelVault (w/ KeyStore)

Up to 13% overhead

c Up to 20% overhead
on GPU execution :

on GPU execution

1 16 64 128 1024 4096 1 16 64 128 1024 4096
Number of Messages Number of Messages

Encryption Decryption

37

Throughput (Gbit/s)

AES-128 CBC Performance

] GPU

[PixelVault
B PixelVault (w/ KeyStore

— CPU

Intel Nehalem

single core (2.27GHz) Of messages

3x-4x faster than CPU
for a sufficient number

128 1024 4096
Number of Messages

128 1024
Number of Messages

Encryption Decryption

38

RSA 1024-bit Decryption

#Msgs | CPU || GPU [25] ‘ PixelVault}| PixelVault (w/ KeyStore)
1 | 1632.7 15.5 15.3 14.3
16 | 1632.7 242.2 240.4 239.2
64 | 1632.7 954.9 949.9 939.6
112 | 1632.7 1659.5 1652.4 1630.3
128 | 1632.7 1892.3 1888.3 1861.7
1024 | 1632.7§| 10643.2 10640.8 0793.1
4006 | 1632. 78| 17623.5 17618.3 14998.8
8192 | 1632.7§| 24904.2 24896.1 21654.4

PixelVault adds an 1%-15% overhead over the default
GPU-accelerated RSA

39

RSA 1024-bit Decryption

#Msgs | CPU | GPU [25] | PixelVault | PixelVault (w/ KeyStore)
1 | 1632.7 15.5 15.3 14.3
16 | 1632.7 242.2 240.4 239.2
64 | 1632.7 954.9 949.9 939.6
112 | 1632.7 1659.5 1652.4 1630.3
128 1892.3 1888.3 1861.7
1024 10643.2 10640.8 0793.1
4096 17623.5 17618.3 14998.8
8192 24904.2 24896.1 21654.4

 Still faster than CPU when batch processing >128 messages

40

Conclusions

* Cryptography on the GPU is not only fast ...

e ... but also secure!

— Preserves the secrecy of keys even when the base
system is fully compromised

e More technical details

— See our ACM CCS’2014 paper

PixelVault: Using GPUs for Securing Cryptographic
Operations”

PixelVault: Using GPUs for Securing
Cryptographic Operations

thank youl!

Giorgos Vasiliadis gvasil@ics.forth.gr

