
WebRTC and Media
Delivery

“WebRTC (Web Real-Time Communication) is
an API definition drafted by the World Wide
Web Consortium (W3C) that supports browser-
to-browser applications for voice calling, video
chat, and P2P file sharing without the need of
either internal or external plugins”

http://en.wikipedia.org/wiki/WebRTC

http://en.wikipedia.org/wiki/WebRTC

WebRTC

FOSS WebRTC
Core project is open source:
http://www.webrtc.org/ under the BSD license

Full Codec Stack:
Google spent $192M in 2010 to acquire two companies, and open sourced
its codecs:

Global IP - iLBC and iSAC
On2 Technologies - VP8

OpenH264 by Cisco

http://www.webrtc.org/

WebRTC
Data Channels API

New protocol stack in
the browser

Why it is huge?

Decentralized
The web meant to work in a distributed manner

Centralized
In reality we are quite centralized due to the fact:
web browsers can only communicate with servers

(HTTP, WebSockets)

WebRTC will (hopefully)
make the web fully

distributed

How does it work
NAT Traversal

What can we do with it?

Send files, send
metadata, chat (1-to-1)

Mesh networks
Good for rich content, media

Mesh use case
Games (cubeslam, mozilla games)
Video (tokbox, room.co, bem.tv)
Audio and radio
Filesharing (sharefest.me, webtorrent)

http://room.co

Peer assisted delivery
Servers are still helpful and the two technologies complete
each other very well:

- Infinitely scalable
- Resilient
- Faster, lower latency
- Cost effective

Building a WebRTC CDN
How do you build a highly dynamic network and keep it
simple?
- Needs to be easy to use, SaaS
- Agnostic to existing webservers and CDNs
- Work in many different use cases
- Secured
- Fast
- Scalable
- FOSS helps a lot, saves a lot of work

High-Level Architecture

Tracker

peer5.js

Origin HTTP
Media Server

peer5.js

node.js https://github.com/websockets/ws

WebRTC
Data Channels

ICE/STUNSignalling

peer5.js serving

WS

HTTP

https://github.com/websockets/ws

DEMO

The (our) problem with
video players today

like <video src=x.mp4>

Media Server

Unbreakable
HTTP

Native Player

JS-based delivery

Video
Player

XHR

Media
Server

(Adaptive)
JS Logic

Video
Player

Media
Server

Native
Logic

Native
HTTP agent

<video src=“x.mp4”> MediaSource

js-based delivery

Video
Player

XHR

Media
Server

(Adaptive)
JS Logic

Video
Player

Media
Server

(Adaptive)
JS Logic

WebRTC Data API Offline Storage APIs

Prioritization Bandwidth
control

XHR

Multiple
Servers

Multiple
Slots

Prefetching
 Logic …

…

Analytics

JS-based delivery
A more distributed approach that adds power to the client
The client can cache content smarter, measure and decide
on better what to fetch, when and from where.

Enablers:
MediaSource Extensions API - power to the people!
DASH:dash.js, mp4box.js,
Flash and HLS: flashls, clappr.io, video.js (JW, Kaltura
soon)
MP4->HLS: https://github.com/kaltura/nginx-vod-module
HTML5 and HLS: MSE-HLS

The Peer5 API
XMLHTTPRequest Compliant

var request = new peer5.Request();
request.open(“GET",url);
request.onload = function(e){
…
}

https://github.com/Peer5/P2PXHR

Summary

Video
Player

Media
Server

Peer5 API

Peer #311

Peer #42

Peer #1337

Peer5
Backend

JS Delivery
Layer

Thanks
http://peer5.com

http://peer5.com

