
WebRTC and Media 
Delivery



“WebRTC (Web Real-Time Communication) is 
an API definition drafted by the World Wide 
Web Consortium (W3C) that supports browser-
to-browser applications for voice calling, video 
chat, and P2P file sharing without the need of 
either internal or external plugins” 
  
http://en.wikipedia.org/wiki/WebRTC

http://en.wikipedia.org/wiki/WebRTC


WebRTC



FOSS WebRTC
Core project is open source: 
http://www.webrtc.org/ under the BSD license 

Full Codec Stack: 
Google spent $192M in 2010 to acquire two companies, and open sourced 
its codecs: 

Global IP - iLBC and iSAC 
On2 Technologies - VP8 

OpenH264 by Cisco 

http://www.webrtc.org/


WebRTC
Data Channels API



New protocol stack in 
the browser



Why it is huge?



Decentralized 
The web meant to work in a distributed manner



Centralized
In reality we are quite centralized due to the fact: 
web browsers can only communicate with servers 

(HTTP, WebSockets)



WebRTC will (hopefully) 
make the web fully 

distributed



How does it work
NAT Traversal



What can we do with it?



Send files, send 
metadata, chat (1-to-1)



Mesh networks
Good for rich content, media



Mesh use case
Games (cubeslam, mozilla games) 
Video (tokbox, room.co, bem.tv) 
Audio and radio 
Filesharing (sharefest.me, webtorrent)  

http://room.co


Peer assisted delivery
Servers are still helpful and the two technologies complete 
each other very well: 

- Infinitely scalable 
- Resilient  
- Faster, lower latency 
- Cost effective 



Building a WebRTC CDN
How do you build a highly dynamic network and keep it 
simple? 
- Needs to be easy to use, SaaS 
- Agnostic to existing webservers and CDNs 
- Work in many different use cases 
- Secured 
- Fast  
- Scalable 
- FOSS helps a lot, saves a lot of work
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DEMO



The (our) problem with 
video players today

like <video src=x.mp4>
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JS-based delivery
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js-based delivery
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JS-based delivery
A more distributed approach that adds power to the client 
The client can cache content smarter, measure and decide 
on better what to fetch, when and from where. 

Enablers:  
MediaSource Extensions API - power to the people! 
DASH:dash.js, mp4box.js,  
Flash and HLS: flashls, clappr.io, video.js (JW,  Kaltura 
soon) 
MP4->HLS: https://github.com/kaltura/nginx-vod-module 
HTML5 and HLS: MSE-HLS



The Peer5 API
XMLHTTPRequest Compliant 

var request = new peer5.Request();
request.open(“GET",url);
request.onload = function(e){
…
}

https://github.com/Peer5/P2PXHR
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Thanks
http://peer5.com

http://peer5.com

