
MappedByteBuffer.hurray()!
Programming the Linux Framebuffer in Java

Christopher Friedt
Principle Embedded Firmware Engineer

chris@mmbnetworks.com
chrisfriedt@gmail.com

code available at http://github.com/cfriedt

mailto:chrisfriedt@gmail.com
mailto:chrisfriedt@gmail.com

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

Overview

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

A long time ago… in a galaxy far, far away…

JAR WARS: Revenge of the Disc
Oracle vs. Google

History

● Oracle claimed that Android had fragmented the Java API

○ Android used the Java for apps (at least syntactically)

○ new, different, and widely adopted Java windowing API

○ Java ME ... wot ??

History

● I thought it would be a good idea to create an AWT port for Android

● AWT - Abstract Windowing Toolkit

● Each platform must implement AWT in order to support windows, buttons, forms, ...

● Oracle would have a lesser basis for their lawsuit against Google / Android OHA

History

Eventually saw the Caciocavallo Project

● http://openjdk.java.net/projects/caciocavallo

● Framework for developing an AWT port

● Enables one to (possibly) create an AWT port entirely in Java

● Java is great for rapid prototyping

History

http://openjdk.java.net/projects/caciocavallo
http://openjdk.java.net/projects/caciocavallo

After some effort, I had written a few widgets, and then experienced deja vu.

● Ready to start painting to a screen!

● but then I couldn’t map the Linux Framebuffer

○ Needed to use JNI to map /dev/fb0

● and then I remembered Video For Linux (V4L) several years prior

○ Needed to use JNI to map /dev/video0

● Why duplicate code? Why doesn’t FileChannel.map() Just Work™?

○ because /dev nodes are “special”

History

Back to the Oracle vs. Google...

● Luckily, Google (kind of) won that lawsuit - for all of us!

● ”So long as the specific code used to implement a method is different, anyone is
free under the Copyright Act to write his or her own code to carry out exactly the
same function or specification of any methods used in the Java API. It does not
matter that the declaration or method header lines are identical.”

● U.S. Copyright Act: 102(b) ... "system or method of operation.”

● I was free to put my just for fun project on the back burner...

History

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

“With a small bit of hacking on weekends,
I can get this to work in no time at all !!~!”

 -- some idiot, 5 years ago

Hypothesis

● *Every OS implements mmap(2)

● Java has MappedByteBuffer, via FileChannel.map(), extends ByteBuffer

● Able to get a FileChannel object with RandomAccessFile.getChannel()

● All of the above works with a plain text file, but does not work on /dev/XXX

● Unable to get MappedByteBuffer.array() object ()

○ kind of required for direct pixelpushing

● The above is true for **any JVM
* that I care to use

** that I have been able to test

Hypothesis

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

Apparatus
JamVM

• Most familiar with hacking

• Squashing into embedded since 2006

• Easy to modify

• Multi-platform

• Multi-classpath

• Met the author at FOSDEM’12

• … straaangely similar to Dalvik ...

GNU Classpath

• Most familiar with hacking
• Squashing into embedded since 2006
• Good code structure
• Several existing AWT implementations
• Easy to add a new, Framebuffer AWT

Apparatus
VMWare

• Would prefer to not need a separate test
machine

• Easier for others to test on Mac / Linux /
Windows

• Can easily run Linux in VMWare

• VMWare has *a Linux framebuffer driver

* quasi-functional

Linux

• Most familiar with hacking
• I have been squashing it into stuff since 1998
• Pretty OK code structure…
• Linux runs on a few things…
• Easy to add a new stuff

Apparatus
Java
FB4JFrameBuffer fb = new FrameBuffer();
FB4JVarScreenInfo vinfo = fb.getVarScreenInfo();
vinfo.setXresVirtual(vinfo.getXres());
vinfo.setYresVirtual(2 * vinfo.getYres());
fb.putVarScreenInfo(vinfo);
FB4JFixScreenInfo finfo = fb.getFixScreenInfo();
int[] pixel = fb.asByteBuffer().asIntBuffer().array();
final int w = vinfo.getXres();
final int h = vinfo.getYres();
final int hmax = vinfo.getYresVirtual();

Peanut Gallery
// ioctl via JNI / JNA
// ioctl via JNI / JNA
// relies on ByteBuffer .read() / .put()!
// relies on ByteBuffer .read() / .put()!
// ioctl via JNI / JNA
// ioctl via JNI / JNA
// calls FileChannel.map() on special node

Apparatus
Java
for(int yoffs = h ;; yoffs += h, yoffs %= hmax) {
 // draw stuff
 fb.flip();
}

Peanut Gallery
// initially draw to 1 / N back buffers, loop 4 EVAR!!

// ioctl via JNI / JNA
// code available at http://github.com/cfriedt/fb4j

http://github.com/cfriedt/fb4j

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

Ensure VMWare / Linux Framebuffer is accessible and can flip pages natively

● #include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);
int munmap(void *addr, size_t length);

● #include <sys/ioctl.h>
int ioctl(int d, unsigned long request, ...);

● #include <linux/fb.h>

Methods

Ensure VMWare / Linux Framebuffer is accessible and can flip pages natively
● int fd = open("/dev/fb0", O_RDWR);

● struct fb_var_screeninfo vinfo = {};
ioctl(fd, FBIOGET_VSCREENINFO, &vinfo);

● vinfo.xres_virtual = vinfo.xres;
vinfo.yres_virtual = 2 * vinfo.yres; // front & back buffer
ioctl(fd, FBIOPUT_VSCREENINFO, &vinfo);

● size_t maplen = vinfo.xres_virtual * vinfo.yres_virtual * vinfo.bits_per_pixel / 8;

Methods

Ensure VMWare / Linux Framebuffer is accessible and can flip pages natively
● uint8_t *map =

 mmap(NULL, maplen, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

● uint16_t w = vinfo.yres;
uint16_t h = vinfo.xres;
for(uint16_t yoffs = h ;; yoffs += h, yoffs %= vinfo.yres_virtual) {
 uint8_t *pixel = &map[yoffs * w];
 vinfo.yoffset = yoffs;
 // … draw stuff to back buffer
 ioctl(fd, FBIOPAN_DISPLAY, &vinfo);
}

Methods

https://bugs.gentoo.org/show_bug.cgi?id=494794

Methods
Linux VMWare Framebuffer Driver

Two problems:

1) fb_fix_screeninfo.line_length

2) FBIOPAN_DISPLAY broken
int vmw_fb_pan_display(
 struct fb_var_screeninfo *var,
 struct fb_info *info) {
 return 0;
}
// should at least return -ENOSYS!

https://bugs.gentoo.org/show_bug.cgi?id=494794
https://bugs.gentoo.org/show_bug.cgi?id=494794

https://bugs.gentoo.org/show_bug.cgi?id=494794

Methods (fix problem 1 in vmwgfx_fb.c)

https://bugs.gentoo.org/show_bug.cgi?id=494794
https://bugs.gentoo.org/show_bug.cgi?id=494794

https://bugs.gentoo.org/show_bug.cgi?id=496516

Methods (fix problem 2 in vmwgfx_fb.c)

https://bugs.gentoo.org/show_bug.cgi?id=496516
https://bugs.gentoo.org/show_bug.cgi?id=496516

Ensure Classpath is able to
1) mmap(2) special files
2) FileDescriptor / VMChannel provides integer file descriptor, for JNI FB ioctls

Available in most VMs for a very long time* (search kfu.com java file descriptor)
Android may use a slightly different field name (other than “fd”)

3) Pass Pointer object from classpath to VM, portably, so VM can allocate array object
New classes: VMFlexArray, VMFlexArrayInfo

4) sun.misc.Unsafe support
5) Buffer and subclasses
6) Object LifeCycle

Methods

Methods: Special Files
● mmap(2) special files

● VMChannel.map()

● Simple check to see if the the file is special
using S_ISCHR(), S_ISBLK())

● aligning up with mmap(2) is not necessary
on

○ Linux

○ Mac OS X

https://github.com/cfriedt/classpath/compare/mmap-special-files

https://github.com/cfriedt/classpath/compare/mmap-special-files
https://github.com/cfriedt/classpath/compare/mmap-special-files

Methods: File Descriptor
integer file descriptor

● VMChannel(final int native_fd)

● public so that it is accessible from
FileDescriptor class

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor
https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

Methods: File Descriptor
integer file descriptor

● int fd

● 2 new constructors requried for
FileChannelImpl
VMChannel

● isValid()

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor
https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

Methods: File Descriptor
integer file descriptor

● Make constructor visible to FileDescriptor

● Uncomment getNativeFD()

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor
https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

Methods: VMFlexArray
VMFlexArray

● flexible because they allow both regularly
allocated java arrays and arrays defined by
arbitrary pointers

● uses system property
gnu.classpath.flexarray.enable

● uses sun.misc.Unsafe, reflection

● statically initialized once upon VM init

● static Object pointerToArray(Pointer address, int
capacity, int array_offset, Class<?> cls);

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

VMFlexArrayInfo

● Private static interface IVMFlexArrayInfo

● A VMFlexArrayInfo is needed for each VM
that supports VMFlexArray

● String jamvminfo = System.getProperty("java.vm.
info");
flexible = null == jamvminfo ? false : jamvminfo.
contains("flexarray");

● private static interface IVMFlexArrayInfo {
 boolean isArrayObjectFlexible();
 int arraySizeOffset();
 int dataPointerOffset();
}

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays
https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

Methods: sun.misc.Unsafe
Unsafe

Requires two additional method declarations in
Classpath. Implementations are in the VM.

1) addressSize()

a) used by VMFlexArrayInfo,
VMFlexArray

2) allocateInstance()

a) used by VMFlexArray

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays
https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

Buffers & Views

ByteBuffer, CharBuffer, ShortBuffer, … really just
rely on VMFlexArray.DirectpointerToArray()

Views allow one type of buffer to be interpreted
as having different types of elements, not unlike
a cast.

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

Methods: Buffers, Views et al

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays
https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

VMDirectByteBuffer

● MappedByteBuffers umap their memory
upon finalization – same as before

● DirectByteBuffers only free memory they
allocate (and only if there is no backing
buffer) upon finalization – same as before

https://github.com/cfriedt/classpath/compare/buffers

Methods: Mapped Array LifeCycle

https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays
https://github.com/cfriedt/classpath/compare/use-sun-misc-unsafe-for-pointer-arrays

Ensure JamVM
1) Implements methods in sun.misc.Unsafe
2) Supports VMFlexArray

Methods

Methods: sun.misc.Unsafe
Additional Methods

● int addressSize()

● 32-bit (4-bytes), 64-bit (8-bytes)

● Object allocateInstancw(Class<?> cls)

● allocate but do not initialize an
object

https://github.com/cfriedt/jamvm/compare/additional-unsafe-methods

Methods: VMFlexArray
● Objects in JamVM:

typedef struct object {
 uintptr_t lock;
 Class *class;
} Object;

● The Class type is simply an Object with
data allocated after for the ClassBlock and
MethodBlock – i.e. the Class type wraps
around the Object type.

https://github.com/cfriedt/jamvm/compare/array-object-modifications

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor
https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

Methods: VMFlexArray Example: int[]

Object: 2 words: lock, Class *

Array Length: 1 word

Array Data0: 1 word

...

Normal Array Object Layout
@ 0x0

Array DataN-1: 1 word

Object: 2 words: lock, Class *

Array Length: 1 word

...

FlexArray Object
Layout @ 0x0

Array DataN-1: 1 word

Array Pointer: 1 word: 0x16

Object: 2 words: lock, Class *

Array Length: 1 word

...

Array Data0: 1 word @ 0x200

Mapped FlexArray
Object Layout @ 0x0

Array DataN-1: 1 word

Array Pointer: 1 word: 0x200

Array Data0: 1 word @ 0x16

Methods: VMFlexArray
● Similarly, array Objects simply wrap the

Object structure

● Previously, JamVM was always
responsible for allocating arrays
contiguously

● 1 additional dereference is performed

● A pointer is reserved directly before the
array data. If array is contiguous, pointer
points to next word. Otherwise, points
elsewhere (e.g. mmap’d data)

https://github.com/cfriedt/jamvm/compare/array-object-modifications

https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor
https://github.com/cfriedt/classpath/compare/add-integer-filedescriptor

Methods: Build Configuration & Running
JamVM

● ./configure --enable-vm-flexarray …
Classpath

● ./configure --enable-vm-flexarray …
Linux

● Patch 1/2 of VMWare patchset is upstream

● I believe it rolls out with current Ubuntu

● Patch 2/2 (page flip) applied manually

●.Waiting for feedback from lkml

VMWare

● Download VM image

● The root password is empty

● SSH in from terminal

● modprobe vmwgfx

● fbset
–xres 640 –yres 480
–vxres 640 –vyres 960

● . ~/.bashrc; testfb4j

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Questions
Thanks

● Compared to respective Buffer.put(), using byte[] foo = MappedByteBuffer.array() and
performing regular Java operations array elements speeds up Java code by a factor of up
to 150x !~1!

Observations

● With JamVM, the bouncing ball demo achieves 21 up to 48 fps

● In C, the bouncing ball demo achieves up to 700 fps :-/

Observations

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Questions
Thanks

● Code works end-to-end with JamVM and GNU Classpath

● Very interested to try VMFlexArray with e.g. other class libraries, other VMs

○ would be useful to have JDWP and Java Profiling Agent support

● Large difference between Java and C fps indicates that JamVM needs performance
optimizations

○ backport Dalvik’s JIT?

● Demo anyone?

Conclusions

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

● MMB Networks, for
● having our monthly HackDay
● encouraging me to do this sort of thing for fun

● Robert Lougher for writing JamVM, the Classpath developer community

● David Airlie (RedHat), and Thomas Hellström (VMWare) for
● reviewing my patches to go upstream in the Linux Kernel

● Mario Torre an Roman Kennke
● for organizing the Java DevRoom, speakers, etc
● for starting the Caciocavallo project

● The Audience!

Thanks!

History
Hypothesis
Apparatus
Methods
Observations
Conclusions
Thanks
Questions

