Robert Virding

Principle Language Expert
at Erlang Solutions Ltd.

LFE -
a lisp on the Erlang VM

LFE - Lisp Flavoured Erlang

What LFE isn’t

e Itisn’t an implementation of Scheme
e Itisn't an implementation of Common Lisp
e Itisn’t an implementation of Clojure

e Properties of the Erlang VM make these
languages difficult to implement efficiently

b7

LFE - Lisp Flavoured Erlang

=i

e LFE is a proper lisp based on the features and
limitations of the Erlang VM

What LFE is

e LFE coexists seamlessly with vanilla Erlang and
OTP

e Runs on the standard Erlang VM

b7

LFE - Lisp Flavoured Erlang 3

Overview

o A little history

e A bit of philosophy and a rationale
e The goal

e What is the BEAM?

e Properties of the BEAM/LFE

e Implementation

b7

LFE - Lisp Flavoured Erlang

The problem

e Ericsson’s “best seller” AXE
telephone exchanges
(switches) required large effort
to develop and maintain
software.

e The problem to solve was how
to make programming these
types of applications easier,
but keeping the same
characteristics.

LFE - Lisp Flavoured Erlang 5

%

Problem domain

e Lightweight, massive concurrency

e Fault-tolerance must be provided

e Timing constraints

e Continuous maintenance/evolution of the system
e Distributed systems

b7

LFE - Lisp Flavoured Erlang 6

=i

Properties of the Erlang system

e Lightweight, massive concurrency
e Asynchronous communication

e Process isolation

e Error handling

e Continuous evolution of the system
e Soft real-time

These we seldom have to directly worry about in a
language, except for receiving messages

b7

LFE - Lisp Flavoured Erlang 7

=i

Properties of the Erlang system

e Immutable data

e Predefined set of data types
e Pattern matching

e Functional language

e Modules/code

e No global data

These are what we mainly “see” directly in our
languages

br 1

LFE - Lisp Flavoured Erlang 8

=i

Some reflections

We were NOT trying to implement a functional
language

We were NOT trying to implement the actor model|

WE WERE TRYING TO SOLVE
THE PROBLEM!

b7

LFE - Lisp Flavoured Erlang 9

=i

e This made the development of the language/
system very focused

Some reflections

e We had a clear set of criteria for what should go
into the language/system

— Was it useful?
— Did it or did it not help build systems?

The language/system
evolved to solve the problem

b7

LFE - Lisp Flavoured Erlang 10

The LFE goal
A “proper” lisp
Efficient implementation on the BEAM

Seamless interaction with Erlang/OTP
and all libraries

b7

LFE - Lisp Flavoured Erlang |l

NEW SKIN FOR THE
OLD CEREMONY

=

New Skin for the Old Ceremony

LFE libraries OTP
LFE OTP

Erlang
ERLANG BEAM

The thickness of the skin affects how efficiently the new
language can be implemented and how seamlessly it can
Interact

b1

LFE - Lisp Flavoured Erlang 13

=i

What IS the BEAM?

A virtual machine to run
Erlang

b7

LFE - Lisp Flavoured Eralng |4

=i

Properties of the BEAM

e Immutable data

e Predefined set of data types
e Pattern matching

e Functional language

e Modules/code

e No global data

b7

LFE - Lisp Flavoured Erlang |5

Features of LFE

e Syntax

e Data types

e Modules/functions
e Lisp-1vs. Lisp-2
e Pattern matching
e Macros

b7

LFE - Lisp Flavoured Erlang

=i

Syntax

e [..]an alternativeto (..)

e Symbol is any number which is not a number
— | a quoted symbol |

e () [1 4L}y . * , ,0 #(#b(#m(separators
e #(..) tuple constant

e #b(..) binary constant

e “abc” <—> (97 98 99)

#\a or #\xab; characters

br 7

LFE - Lisp Flavoured Erlang |7

Data types

e LFE has a fixed set of data types

— Numbers

— Atoms (lisp symbols)
— Lists

— Tuples (lisp vectors)
— Maps

— Binaries

— Opaque types

LFE - Lisp Flavoured Erlang

Atom/symbols

e Only has a name, no other properties
e ONE name space

e No CL packages

— No name munging to fake it

— foo in ﬁzrcka:g:e:batffb'ar:foa

e Booleans are atoms, true and false

b7

LFE - Lisp Flavoured Erlang

Binaries

(binary 1 2 3)

(binary (t little-endian (size 16))
(u (size 4)) (v (size 4))
(f float (size 32))
(b bitstring))

e Byte/bit data with constructors
e Properties are type, size endianess, sign

e But mustdo ((foo a 35))

b7

© 1999-2014 Erlang Solutions Ltd.

20

Binaries

(binary (ip-version (size 4)) (h-len (size 4))
(srvc-type (size 8)) (tot-len (size 16))
(id (size 16)) (flags (size 3))
(frag-off (size 13)) (ttl (size 8))
(proto (size 8)) (hrd-chksum (size 16))
(src—ip (size 32)) (dst-ip (size 32))
(rest bytes))

e |P packet header

b7

© 1999-2014 Erlang Solutions Ltd.

21

Modules and functions

e Modules are very basic

On
On

vy have name and exported functions
y contains functions

— Flat module space

e Modules are the unit of code handling

— compilation, loading, deleting

e Functions only exist in modules
— Except in the shell (REPL)

e NO interdependencies between modules

b7

LFE - Lisp Flavoured Erlang

22

Modules and functions

(defmodule arith
(export (add 2) (add 3) (sub 2)))

(defun add (a b) (+ a b))
(defun add (a b c) (+ a b c))

(defun sub (a b) (- a b))

e Function definition resembles CL
e Functions CANNOT have a variable number of arguments!

e Can have functions with the same name and different number of
arguments (arity), they are different functions

© 1999-2014 Erlang Solutions Ltd. 23

b7

Modules and functions

e LFE modules can consist of

— Declarations

— Function definitions

— Macro definitions

— Compile time function definitions

e Macros can be defined anywhere, but must be
defined before being used

b7

LFE - Lisp Flavoured Erlang

=i

Lisp-1 vs. Lisp-2

e How symbols are evaluated in the function
position and argument position

e In Lisp-1 symbols only have value cells

(foo 42 bar)

~N /

value

e In Lisp-2 symbols have value and function cells

(foo 42 bar)

N/

function value

b7

LFE - Lisp Flavoured Erlang 25

Lisp-1 vs. Lisp-2

(defun foo (x y) ..)
(defun foo (x y z) ..)

(defun bar (a b c)
(let ((baz (lambda (m) ..)))
(baz c)
(foo a b)
(foo 42 a b)))

e With Lisp-1 in LFE | can have multiple top-level functions with
the same name, foo/2 and foo/3

e But only one local function with a name, baz/1
THIS IS INCONSISTENT!

b7

© 1999-2014 Erlang Solutions Ltd.

26

Lisp-1 vs. Lisp-2

(defun foo (x y) ..)
(defun foo (x y z) ..)

(defun bar (a b c)
(flet ((baz (m) ..)
(baz (m n) ..))
(foo a b)
(foo 42 a b)
(baz c)
(baz a c)))

e With Lisp-2 in LFE | can have multiple top-level and local
functions with the same name, foo/2, foo/3 and baz/1, baz/2

THIS IS CONSISTENT!

© 1999-2014 Erlang Solutions Ltd. 27

b7

=i

e Erlang/LFE functions have both name and arity
e Lisp-2 fits Erlang VM better
e LFE is Lisp-2, or rather Lisp-2+

Lisp-1 vs. Lisp-2

br 1

LFE - Lisp Flavoured Erlang 28

=i

Pattern matching

e Pattern matching is a BIG WIN™
e The Erlang VM directly supports pattern matching

e We use pattern matching everywhere

— Function clauses
— let, case and receive
— |In macros cond, lIc and bc

b7

LFE - Lisp Flavoured Erlang 29

Pattern matching

(let ((<pattern> <expression>)
(<pattern> <expression>)

)

(case <expression>
(<pattern> <expression> ..)
(<pattern> <expression> ..)

e)

(receive
(<pattern> <expression> ..)
(<pattern> <expression> ..)

)

e Variables are only bound through pattern matching

© 1999-2014 Erlang Solutions Ltd.

b7

30

Pattern matching

(defun name
([<patl> <pat2> ..] <expression> ..)
([<patl> <pat2> ..] <expression> ..)

)

(cond (<test> ..)
((?= <pattern> <expr>) ..)

)

e Function clauses use pattern matching to select clause

© 1999-2014 Erlang Solutions Ltd.

b7

31

=i

Pattern matching

(defun ackermann

([0 n] (+n 1))
([m @] (ackermann (- m 1) 1))
([m n] (ackermann (- m 1) (ackermann m (- n 1)))))

(defun member (x es)
(cond ((=:= es ()) ‘false)
((=:= x (car es)) ‘true)
(else (member x (cdr es)))))

(defun member

([x (cons e es)] (when (=:= x e)) ‘true)
([x (cons e es)] (member x es))

([x ()] ‘false))

b7

© 1999-2014 Erlang Solutions Ltd. 32

Macros

e Macros are UNHYGIENIC
e No (gensym)

— Cannot create unique atoms
— Unsafe in long-lived systems

e Only compile-time at the moment
— Except in the shell (REPL)

e Core forms can never be shadowed

br 1

LFE - Lisp Flavoured Erlang

33

=i

Macros

(defmacro add-them (a b) “(+ ,a ,b))

(defmacro avg args ; (&rest args) in CL
“(/ (+ ,@args) ,(length args)))

(defmacro listx
((list e) e)
((cons e es) ‘(cons ,e (listx . ,es)))

() ()))

e Macros can have any other number of arguments
— But only macro definition per name

e Macros can have multiple clauses like functions
— The argument is then the list of arguments to the macro

e We have the backquote macro

© 1999-2014 Erlang Solutions Ltd. 34

b7

=i

e Can work on files and Erlang abstract code

Implementation: Erlang compiler

e Can generate .beam files or binaries
e Has Core, a nice intermediate language

— (Can be input to the compiler
— simple and reqgular
— easier to compile to

b7

LFE - Lisp Flavoured Erlang 35

=i

Implementation: Erlang compiler

Internal languages

Core Kernel Beam

Internal modules

~
~

-
"

.~ Core S
' . 3 .
—> optimisation

~ v
~ s -
.-----

LFE - Lisp Flavoured Eralng 36

Implementation: Core erlang

e Simple functional language
e 'normal” lexical scoping
e Has just the basics

— ho records
— hno list comprehensions

e Supports pattern matching (yeah!)
e Most optimisations done on core
Dialyzer speaks Core

— sort of :—(

b7

LFE - Lisp Flavoured Erlang

37

Implementation: Core erlang

(defun sum
([(cons h t)] (+ h (sum t))) ; (,h o, t)
([()] 9))

'sum'/1 =
fun (_core) —>
case _cor@ of
<[H|T]> when 'true' ->
let < corl> =
apply 'sum'/1(T)
in call 'erlang':'+'(H, _corl)
<[]> when 'true' —> 0
(< _cor2> when 'true' —>

=i

(primop 'match_fail' ({'function_clause', _cor2})

—| [{'function_name',{'sum',1}}1)
—| ['compiler_generated'])
end

LFE - Lisp Flavoured Erlang

b7

38

Implementation: Core LFE

(case expr clause ...)

Hftesttrue—Ffatlse)—

(receive clause ... (after timeout ...))
(catch ...)

(try expr (case ...) (catch ...) (after ...))
(lambda ...)

‘rateh—tambda—cltause———

(let ...)

et—Funetion———) (letrec-function ...)
(cons h t), (list ...) (tuple ...) (binary ...)
(func arg ...), (funcall var arg ...)

(call mod func arg ...)

(define-function name lambda|match-lambda)

LFE - Lisp Flavoured Erlang

%

39

WHY? WHY? WHY?

| like Lisp
| like Erlang

| like to implement
languages

So doing LFE seemed
natural

LFE - Lisp Flavoured Erlang

=i

Robert Virding: rvirding@gmail.com @rvirding

LFE
http://Ife.io/
https://github.com/rvirding/Ife
https://github.com/Ife
http://groups.google.se/group/lisp-flavoured-erlang
#erlang-lisp @ErlangLisp

Qf‘) LFE - Lisp Flavoured Erlang 41

mailto:rvirding@gmail.com

