
Atomic Mode-Setting

Thierry Reding

NVIDIA Corporation

February 1, 2015

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 1 / 25



Table of Contents

1 A Bit of History
Pre-KMS Era
Kernel Mode-Setting Era

2 Atomic Mode-Setting
Building Blocks

3 Driver Conversion
Preparatory Work
Three Phases
Follow-up Work

4 Future Work
Userspace
Drivers

5 Summary

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 2 / 25



A Bit of History Pre-KMS Era

Prehistory

user-space mode-setting

X driver has direct access to graphics card registers

X needs superuser privileges

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 3 / 25



A Bit of History Pre-KMS Era

The Middle Ages

DRM allows multiple processes to access a single graphics card

attempt to provide a common API

buffer management
command submission

user-space still performs mode-setting

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 4 / 25



A Bit of History Kernel Mode-Setting Era

Renaissance

kernel mode-setting (KMS) is introduced

kernel drivers are now in charge of mode-setting

kernel drivers also manage other resources

buffer objects
output configuration
hotplug

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 5 / 25



A Bit of History Kernel Mode-Setting Era

Renaissance - Kernel Mode-Setting

CRTCs, encoders and connectors

query configurations and capabilities
set modes and framebuffers
page-flip buffers

planes

query number of available planes and supported formats
set a plane (position, size, framebuffer)
...

object properties

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 6 / 25



A Bit of History Kernel Mode-Setting Era

Renaissance - Not everything is perfect

mode sets fail too late, there’s no way to rollback

KMS does not guarantee that a configuration is applied in totality for
the next frame

no VBLANK-synchronized page-flips for planes (!)

compositors want perfect frames

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 7 / 25



A Bit of History Kernel Mode-Setting Era

Perfect Frames?

Suppose we want to show two planes on the screen:

Whereas we really want this:

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 8 / 25



Atomic Mode-Setting

Atomic Mode-Setting

allows an output configuration to be validated before it is applied:

no hardware is touched before the driver acknowledges that the
configuration is valid and can be applied
no need for rollback

allows atomic updates of an output configuration:

multiple planes updated at the same time
perfect frames

allows for unification and simplification of drivers

legacy code can be removed from drivers
much of the handling moves into helpers

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 9 / 25



Atomic Mode-Setting Building Blocks

Atomic Mode-Setting - Building Blocks

Universal Planes

Properties

Atomic State

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 10 / 25



Atomic Mode-Setting Building Blocks

Universal Planes

root window is special in legacy KMS

becomes a regular plane
hardware treats them the same anyway

code becomes simpler

cursor exposed as plane

exports a list of supported formats

helpers are available

implement legacy IOCTLs using universal planes
implement primary plane using legacy callbacks

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 11 / 25



Atomic Mode-Setting Building Blocks

Properties and Atomic State

interface parameters are converted to object properties

properties are stored in atomic state objects

blob properties are read-only, no way to change the video mode from
userspace (yet)

atomic state objects are validated and applied

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 12 / 25



Driver Conversion Preparatory Work

Universal Planes

relatively easy to implement

matches what modern hardware exposes

many drivers are already converted

good references

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 13 / 25



Driver Conversion Preparatory Work

VBLANK Handling

atomic mode-setting has somewhat strict requirements

plane updates are synchronized to VBLANKs to make sure
framebuffers are unused before unreferenced
good news because drivers don’t have to worry anymore

drivers must disable VBLANK machinery when the display controller
is off (drm crtc vblank off())

when the display controller is enabled the VBLANK machinery must
be turned on again (drm crtc vblank on())

Helpers fall over if the hardware state isn’t accurately mirrored in the
VBLANK machinery.

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 14 / 25



Driver Conversion Preparatory Work

Driver Rewrite

atomic mode-setting has fairly high expectations

especially important for atomic DPMS

->prepare() is called when the CRTC or encoder is disabled

->mode set() is called when the mode changes

->commit() is used when the CRTC or encoder is enabled

On Tegra everything was done in ->dpms(), requiring an almost complete
rewrite.

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 15 / 25



Driver Conversion Three Phases

Conversion in Three Phases

Phase 1 - Transitional Helpers

Phase 2 - Atomic State Object Scaffolding

Phase 3 - Rolling out Atomic Support

Transitional and atomic helpers are very modular and the conversion is
suprisingly painless.

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 16 / 25



Driver Conversion Three Phases

Phase 1 - Transitional Helpers

implement legacy entry points in terms of new atomic callbacks
CRTCs

->atomic check() - validate state
->atomic begin() - prepare for updates
->atomic flush() - apply updates atomically
->mode set nofb() - apply CRTC timings

It is possible to set a mode without a primary plane.
planes

->prepare fb() - e.g. pin backing storage
->cleanup fb() - e.g. unpin backing storage
->atomic check() - validate state
->atomic update() - plane updates
->atomic disable() - disable plane

caveat: ->atomic destroy state() needs to be wired up here,
otherwise the transitional helpers will leak state objects

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 17 / 25



Driver Conversion Three Phases

Phase 2 - Atomic State Object Scaffolding

wire up state callbacks for planes, CRTCs and connectors:
->reset()

drm atomic helper * reset()

->atomic duplicate state()

drm atomic helper * duplicate state()

->atomic destroy state()

drm atomic helper * destroy state()

default helpers are good enough for starters

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 18 / 25



Driver Conversion Three Phases

Phase 3 - Rolling out Atomic Support

Step 1 - switch to atomic helpers internally:
Planes:

drm atomic helper update plane()

drm atomic helper disable plane()

Driver:

drm atomic helper check()

drm atomic helper commit()

Driver now uses only atomic interfaces internally.

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 19 / 25



Driver Conversion Three Phases

Phase 3 - Rolling out Atomic Support

Step 2 - switch to atomic helpers for userspace IOCTLs:
drm atomic helper set config()

DRM MODE IOCTL SET CRTC

provide a custom ->atomic commit() implementation

to support asynchronous commits, required for page-flipping

drm atomic helper page flip()

DRM MODE IOCTL PAGEFLIP

Driver is now fully atomic (semantically).

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 20 / 25



Driver Conversion Follow-up Work

Rip out Cruft

->mode set() and ->mode set base() are no longer used

->mode set nofb() does what is necessary to set a mode

atomic DPMS

DPMS standby and suspend are no more (w00t)
->disable() and ->enable() callbacks
atomic DPMS is a full off or on cycle

Isn’t this exactly what Tegra used to do before the almost complete
rewrite? Almost, except the atomic helpers now keep track of
everything.

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 21 / 25



Driver Conversion Follow-up Work

Where the fun begins

Subclassing atomic state:

embed struct drm * state in device-specific structures
move device-specific data into these structures

Allows ->atomic check() to cache information already computed.
Simplifies other code because it doesn’t need to recompute.

Implement truly atomic updates:

e.g. ->atomic flush()

”GO” bits

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 22 / 25



Future Work Userspace

Userspace IOCTL

brand new in Linux v3.20

still hidden behind drm.atomic parameter

amalgamation of objects and properties:

array of object IDs
array of per-object property counts
array of properties
flags

page-flip
test-only
non-block
allow modeset

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 23 / 25



Future Work Drivers

More cool stuff

hardware readout:

->reset() reads state of hardware at driver load time
no transition if no state is changed
seamless transition between firmware or bootloader and kernel

unify asynchronous commits

possibly via generic helpers

asynchronous page-flips

eglSwapInterval()

because everybody loves benchmarks
generic flip-queue that works for all drivers

can fast-forward over a bunch of updates if supported by the driver
it’s like benchmarking page-flips, but without the tearing

plane rotation via standard properties

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 24 / 25



Summary

Summary

Atomic mode-setting is not only necessary but allows a bunch of nice
and long overdue cleanup and unification.

Atomic mode-setting is nowhere near as complicated as it sounds.

Before converting your driver, make sure to have well-behaved
callbacks and VBLANK handling.

Given that the conversion is almost trivial because of excellent helpers.

Bottom Line
If you maintain a KMS driver, go convert it now, otherwise you are going
to miss out on all the good stuff coming up.

Thierry Reding (NVIDIA) Atomic Mode-Setting February 1, 2015 25 / 25


	A Bit of History
	Pre-KMS Era
	Kernel Mode-Setting Era

	Atomic Mode-Setting
	Building Blocks

	Driver Conversion
	Preparatory Work
	Three Phases
	Follow-up Work

	Future Work
	Userspace
	Drivers

	Summary

