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What is IIO?

● Industrial Input/Output framework
– Not really just for Industrial IO
– All non-HID IO

– ADC, DAC, light, accelerometer, gyro, magnetometer, 
humidity, temperature, rotation, angular momentum, ... 

● In the upstream Linux kernel since v2.6.32 (2009)
● Moved out of staging/ in v3.5 (2012)
● ~200 IIO device drivers (v3.19)

– Many drivers support multiple devices



  

Why use IIO for SDR?

● Provides hardware abstraction layer
– Allows sharing of infrastructure

– Allows developers to focus on the solution

– Allows application re-use



  

Why use IIO for SDR?

● Kernel drivers have low-level access to 
hardware
– MMIO

– Interrupts

● IIO provides fast and efficient data transport
– From device to application

– From application to device

– From device to network/storage (soon)



  

IIO Framework



  

IIO – Devices



  

IIO – Devices

● Main structure
● Typically corresponds to a physical hardware 

unit
● Represented as directories in sysfs



  

IIO – Attributes



  

IIO – Attributes

● Describe hardware capabilities
● Allow to configure hardware configuration
● Represented as files in sysfs



  

IIO – Channels



  

IIO – Channels

● Representation of a data channel
● Has direction, type, index and modifier
● Attributes provide additional information

– scale, offset

– Calibration data

– Filters settings, hysteresis

– ...



  

IIO – Buffers



  

IIO – Buffers

● Used for continuous data capture/transmit
● Channels can be enabled/disabled
● Channels specify their data layout
● /dev/iio:deviceX allows read()/write() access
● Configuration using sysfs files
● Support for different buffer implementations

– Software FIFO
– DMA Buffer
– Device specific buffer



  

IIO – DMA buffer

● DMA is used to copy data from device to 
memory

● mmap() is used to make data available in 
application

● Allows low overhead high-speed data capture
● Data is grouped into chunks (called DMA 

blocks) to manage ownership
– Either application or driver/hardware owns a block



  

IIO – DMA buffer



  

Example – AD-FMCOMMS2-EBZ

● Software Defined Radio platform
● AD9361 Agile integrated transceiver
● 200 kHz - 56 MHz sample rate
● Tunable from 70MHz to 6GHz
● Full-duplex
● MIMO, 2x RX and TX

– Each channel a set of 12-bit I and Q 
data



  



  

Example – AD-FMCOMMS2-EBZ

root@analog:/sys/bus/iio/devices# ls
iio:device0  iio:device1  iio:device2
iio:device3  iio:device4

root@analog:/sys/bus/iio/devices# cat */name
ad7291
ad9361-phy
xadc
cf-ad9361-dds-core-lpc
cf-ad9361-lpc



  

Example – AD-FMCOMMS2-EBZ

# ls iio\:device1/
in_voltage_filter_fir_en  
in_voltage_gain_control_mode_available
in_voltage_rf_bandwidth
in_voltage_rf_dc_offset_tracking_en
in_voltage0_gain_control_mode
in_voltage0_hardwaregain
in_voltage0_rssi
...
out_voltage_filter_fir_en
out_voltage0_hardwaregain
out_voltage0_rssi
...
filter_fir_config
...
in_temp0_input2



  

Example – AD-FMCOMMS2-EBZ

# ls iio\:device4/
buffer
in_voltage0_calibbias
in_voltage0_calibscale
in_voltage1_calibphase
in_voltage_sampling_frequency
in_voltage0_calibphase
in_voltage1_calibbias
in_voltage1_calibscale
name
scan_elements



  

Example – AD-FMCOMMS2-EBZ

# ls iio\:device4/buffer/
enable
length

# ls iio\:device4/scan_elements/
in_voltage0_en
in_voltage0_index
in_voltage0_type
in_voltage1_en
in_voltage1_index
in_voltage1_type



  

Plumbing Layer



  

libiio

● High level C interface to IIO
● Abstracts away low level details of IIO kernel 

ABI
● Transparently handles Low-Speed and High-

Speed devices
– Uses high speed interface when available



  

libiio

● Multiple backends
– Local, directly using the IIO ABI

– Network, uses network protocol to talk (remote) 
server (iiod)

– Debug, fake devices for testing

● Bindings for python, C#, (C++)
● Cross platform (Linux, Windows)



  

iiod

● Multiplexing between multiple readers/writers
● Support for remote clients (via TCP/IP)
● Applications do not need system level 

privileges 
● Transparent from the applications point of view



  

iiod & libiio



  

IIO Scope

● Capture and display data
– Time domain, frequency domain, constellation, 

cross-correlation

– Markers

● Plug-in system for easy configuration GUIs
● Custom math operations (experimental)



  

IIO Scope – Capture Window



  

IIO Scope – Plugins



  

GNU Radio Plugin

● Two base classes
– IIO Sink, Transmit data to a IIO device

– IIO Source, Receive data from a IIO device

● Can select device and inputs/outputs
● Built-in support for Interpolation/Decimation



  

GNU Radio Plugin

● Possible to subclass IIOSink/IIOSource
– e.g. to implement device specific specialization

● GUI
● Setting attributes

– Current examples:
● FMCOMMS2 Sink
● FMCOMMS2 Source



  

Gnu Radio Plugin



  

Demo

● FM radio receiver



  

Demo Setup

● AD-FMCOMMS3-EBZ (AD9361)
● Zed Board (ZYNQ FPGA) running Linux with 

AD9361 IIO driver and IIOD
● Laptop running GNU Radio with the IIO plugin
● Laptop connected to ZED board via Ethernet



  

Demo Flow

● Capture data in the FM radio spectrum
● Stream it from the ZED board to the Laptop
● Decode the FM radio stream in GNU radio
● Playback FM radio on the Laptops speaker



  

Demo GNU Radio Canvas



  

Live Demo



  

Further information

● https://github.com/orgs/analogdevicesinc

– https://github.com/analogdevicesinc/libiio

– https://github.com/analogdevicesinc/iio-oscilloscope

– https://github.com/analogdevicesinc/linux

– https://github.com/analogdevicesinc/gnuradio

● http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

● http://analogdevicesinc.github.io/libiio/

● http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope

● https://wiki.analog.com/resources/tools-software/linux-software/gnuradio

● https://archive.fosdem.org/2012/schedule/event/iio.html

● http://events.linuxfoundation.org/sites/events/files/slides/iio_high_speed.pdf

https://github.com/orgs/analogdevicesinc
https://github.com/analogdevicesinc/libiio
https://github.com/analogdevicesinc/iio-oscilloscope
https://github.com/analogdevicesinc/linux
https://github.com/analogdevicesinc/gnuradio
http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals
http://analogdevicesinc.github.io/libiio/
http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
https://wiki.analog.com/resources/tools-software/linux-software/gnuradio
https://archive.fosdem.org/2012/schedule/event/iio.html
http://events.linuxfoundation.org/sites/events/files/slides/iio_high_speed.pdf


  

Q/A



  

IIO – Device Graph (Future)

● Use media controller framework to expose 
device topology
– Allows userspace to auto-discover processing 

pipeline

– Better support for standard components



  

IIO – Zero Copy (Future)

● Use vmsplice and friends to provide zero copy
– High-speed network streaming without CPU 

interaction

– High-speed disk writes/reads without CPU 
interaction
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