

Software Defined Radio
using the

Linux Industrial IO framework
- A Hardware Abstraction Layer -

Lars-Peter Clausen, Analog Devices

What is IIO?

● Industrial Input/Output framework
– Not really just for Industrial IO
– All non-HID IO

– ADC, DAC, light, accelerometer, gyro, magnetometer,
humidity, temperature, rotation, angular momentum, ...

● In the upstream Linux kernel since v2.6.32 (2009)
● Moved out of staging/ in v3.5 (2012)
● ~200 IIO device drivers (v3.19)

– Many drivers support multiple devices

Why use IIO for SDR?

● Provides hardware abstraction layer
– Allows sharing of infrastructure

– Allows developers to focus on the solution

– Allows application re-use

Why use IIO for SDR?

● Kernel drivers have low-level access to
hardware
– MMIO

– Interrupts

● IIO provides fast and efficient data transport
– From device to application

– From application to device

– From device to network/storage (soon)

IIO Framework

IIO – Devices

IIO – Devices

● Main structure
● Typically corresponds to a physical hardware

unit
● Represented as directories in sysfs

IIO – Attributes

IIO – Attributes

● Describe hardware capabilities
● Allow to configure hardware configuration
● Represented as files in sysfs

IIO – Channels

IIO – Channels

● Representation of a data channel
● Has direction, type, index and modifier
● Attributes provide additional information

– scale, offset

– Calibration data

– Filters settings, hysteresis

– ...

IIO – Buffers

IIO – Buffers

● Used for continuous data capture/transmit
● Channels can be enabled/disabled
● Channels specify their data layout
● /dev/iio:deviceX allows read()/write() access
● Configuration using sysfs files
● Support for different buffer implementations

– Software FIFO
– DMA Buffer
– Device specific buffer

IIO – DMA buffer

● DMA is used to copy data from device to
memory

● mmap() is used to make data available in
application

● Allows low overhead high-speed data capture
● Data is grouped into chunks (called DMA

blocks) to manage ownership
– Either application or driver/hardware owns a block

IIO – DMA buffer

Example – AD-FMCOMMS2-EBZ

● Software Defined Radio platform
● AD9361 Agile integrated transceiver
● 200 kHz - 56 MHz sample rate
● Tunable from 70MHz to 6GHz
● Full-duplex
● MIMO, 2x RX and TX

– Each channel a set of 12-bit I and Q
data

Example – AD-FMCOMMS2-EBZ

root@analog:/sys/bus/iio/devices# ls
iio:device0 iio:device1 iio:device2
iio:device3 iio:device4

root@analog:/sys/bus/iio/devices# cat */name
ad7291
ad9361-phy
xadc
cf-ad9361-dds-core-lpc
cf-ad9361-lpc

Example – AD-FMCOMMS2-EBZ

ls iio\:device1/
in_voltage_filter_fir_en
in_voltage_gain_control_mode_available
in_voltage_rf_bandwidth
in_voltage_rf_dc_offset_tracking_en
in_voltage0_gain_control_mode
in_voltage0_hardwaregain
in_voltage0_rssi
...
out_voltage_filter_fir_en
out_voltage0_hardwaregain
out_voltage0_rssi
...
filter_fir_config
...
in_temp0_input2

Example – AD-FMCOMMS2-EBZ

ls iio\:device4/
buffer
in_voltage0_calibbias
in_voltage0_calibscale
in_voltage1_calibphase
in_voltage_sampling_frequency
in_voltage0_calibphase
in_voltage1_calibbias
in_voltage1_calibscale
name
scan_elements

Example – AD-FMCOMMS2-EBZ

ls iio\:device4/buffer/
enable
length

ls iio\:device4/scan_elements/
in_voltage0_en
in_voltage0_index
in_voltage0_type
in_voltage1_en
in_voltage1_index
in_voltage1_type

Plumbing Layer

libiio

● High level C interface to IIO
● Abstracts away low level details of IIO kernel

ABI
● Transparently handles Low-Speed and High-

Speed devices
– Uses high speed interface when available

libiio

● Multiple backends
– Local, directly using the IIO ABI

– Network, uses network protocol to talk (remote)
server (iiod)

– Debug, fake devices for testing

● Bindings for python, C#, (C++)
● Cross platform (Linux, Windows)

iiod

● Multiplexing between multiple readers/writers
● Support for remote clients (via TCP/IP)
● Applications do not need system level

privileges
● Transparent from the applications point of view

iiod & libiio

IIO Scope

● Capture and display data
– Time domain, frequency domain, constellation,

cross-correlation

– Markers

● Plug-in system for easy configuration GUIs
● Custom math operations (experimental)

IIO Scope – Capture Window

IIO Scope – Plugins

GNU Radio Plugin

● Two base classes
– IIO Sink, Transmit data to a IIO device

– IIO Source, Receive data from a IIO device

● Can select device and inputs/outputs
● Built-in support for Interpolation/Decimation

GNU Radio Plugin

● Possible to subclass IIOSink/IIOSource
– e.g. to implement device specific specialization

● GUI
● Setting attributes

– Current examples:
● FMCOMMS2 Sink
● FMCOMMS2 Source

Gnu Radio Plugin

Demo

● FM radio receiver

Demo Setup

● AD-FMCOMMS3-EBZ (AD9361)
● Zed Board (ZYNQ FPGA) running Linux with

AD9361 IIO driver and IIOD
● Laptop running GNU Radio with the IIO plugin
● Laptop connected to ZED board via Ethernet

Demo Flow

● Capture data in the FM radio spectrum
● Stream it from the ZED board to the Laptop
● Decode the FM radio stream in GNU radio
● Playback FM radio on the Laptops speaker

Demo GNU Radio Canvas

Live Demo

Further information

● https://github.com/orgs/analogdevicesinc

– https://github.com/analogdevicesinc/libiio

– https://github.com/analogdevicesinc/iio-oscilloscope

– https://github.com/analogdevicesinc/linux

– https://github.com/analogdevicesinc/gnuradio

● http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

● http://analogdevicesinc.github.io/libiio/

● http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope

● https://wiki.analog.com/resources/tools-software/linux-software/gnuradio

● https://archive.fosdem.org/2012/schedule/event/iio.html

● http://events.linuxfoundation.org/sites/events/files/slides/iio_high_speed.pdf

https://github.com/orgs/analogdevicesinc
https://github.com/analogdevicesinc/libiio
https://github.com/analogdevicesinc/iio-oscilloscope
https://github.com/analogdevicesinc/linux
https://github.com/analogdevicesinc/gnuradio
http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals
http://analogdevicesinc.github.io/libiio/
http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
https://wiki.analog.com/resources/tools-software/linux-software/gnuradio
https://archive.fosdem.org/2012/schedule/event/iio.html
http://events.linuxfoundation.org/sites/events/files/slides/iio_high_speed.pdf

Q/A

IIO – Device Graph (Future)

● Use media controller framework to expose
device topology
– Allows userspace to auto-discover processing

pipeline

– Better support for standard components

IIO – Zero Copy (Future)

● Use vmsplice and friends to provide zero copy
– High-speed network streaming without CPU

interaction

– High-speed disk writes/reads without CPU
interaction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

