Software Defined Radio using the Linux Industrial IO framework - A Hardware Abstraction Layer -

Lars-Peter Clausen, Analog Devices

What is IIO?

- Industrial Input/Output framework
 - Not really just for Industrial IO
 - All non-HID IO
 - ADC, DAC, light, accelerometer, gyro, magnetometer, humidity, temperature, rotation, angular momentum, ...
- In the upstream Linux kernel since v2.6.32 (2009)
- Moved out of staging/ in v3.5 (2012)
- ~200 IIO device drivers (v3.19)
 - Many drivers support multiple devices

Why use IIO for SDR?

- Provides hardware abstraction layer
 - Allows sharing of infrastructure
 - Allows developers to focus on the solution
 - Allows application re-use

Why use IIO for SDR?

- Kernel drivers have low-level access to hardware
 - MMIO
 - Interrupts
- IIO provides fast and efficient data transport
 - From device to application
 - From application to device
 - From device to network/storage (soon)

IIO Framework

IIO – Devices

IIO – Devices

- Main structure
- Typically corresponds to a physical hardware unit
- Represented as directories in sysfs

IIO – Attributes

IIO – Attributes

- Describe hardware capabilities
- Allow to configure hardware configuration
- Represented as files in sysfs

IIO – Channels

IIO – Channels

- Representation of a data channel
- Has direction, type, index and modifier
- Attributes provide additional information
 - scale, offset
 - Calibration data
 - Filters settings, hysteresis

- ...

IIO – Buffers

IIO – Buffers

- Used for continuous data capture/transmit
- Channels can be enabled/disabled
- Channels specify their data layout
- /dev/iio:deviceX allows read()/write() access
- Configuration using sysfs files
- Support for different buffer implementations
 - Software FIFO
 - DMA Buffer
 - Device specific buffer

IIO – DMA buffer

- DMA is used to copy data from device to memory
- mmap() is used to make data available in application
- Allows low overhead high-speed data capture
- Data is grouped into chunks (called DMA blocks) to manage ownership
 - Either application or driver/hardware owns a block

IIO – DMA buffer

- Software Defined Radio platform
- AD9361 Agile integrated transceiver
- 200 kHz 56 MHz sample rate
- Tunable from 70MHz to 6GHz
- Full-duplex
- MIMO, 2x RX and TX
 - Each channel a set of 12-bit I and Q data


```
root@analog:/sys/bus/iio/devices# ls
iio:device0 iio:device1 iio:device2
iio:device3 iio:device4
```

```
root@analog:/sys/bus/iio/devices# cat */name
ad7291
ad9361-phy
xadc
cf-ad9361-dds-core-lpc
cf-ad9361-lpc
```

```
# ls iio\:device1/
in_voltage_filter_fir_en
in_voltage_gain_control_mode_available
in_voltage_rf_bandwidth
in_voltage_rf_dc_offset_tracking_en
in_voltage0_gain_control_mode
in_voltage0_hardwaregain
in_voltage0_rssi
```

```
out_voltage_filter_fir_en
out_voltage0_hardwaregain
out_voltage0_rssi
```

```
...
filter_fir_config
...
```

```
in_temp0_input2
```

ls iio\:device4/ buffer in_voltage0_calibbias in_voltage0_calibscale in_voltage1_calibphase in_voltage_sampling_frequency in_voltage0_calibphase in_voltage1_calibbias in_voltage1_calibscale name scan elements

```
# ls iio\:device4/buffer/
enable
length
```

```
# ls iio\:device4/scan_elements/
in_voltage0_en
in_voltage0_index
in_voltage0_type
in_voltage1_en
in_voltage1_index
in_voltage1_type
```

Plumbing Layer

libiio

- High level C interface to IIO
- Abstracts away low level details of IIO kernel ABI
- Transparently handles Low-Speed and High-Speed devices
 - Uses high speed interface when available

libiio

- Multiple backends
 - Local, directly using the IIO ABI
 - Network, uses network protocol to talk (remote) server (iiod)
 - Debug, fake devices for testing
- Bindings for python, C#, (C++)
- Cross platform (Linux, Windows)

iiod

- Multiplexing between multiple readers/writers
- Support for remote clients (via TCP/IP)
- Applications do not need system level privileges
- Transparent from the applications point of view

iiod & libiio

IIO Scope

- Capture and display data
 - Time domain, frequency domain, constellation, cross-correlation
 - Markers
- Plug-in system for easy configuration GUIs
- Custom math operations (experimental)

IIO Scope – Capture Window

Solution ADI IIO Oscilloscope Fi	-T Capture
File Edit View	
▼ cf-ad9361-lpc	🕨 🕒 🖾 🧮 🗹 Auto scale 🗹 Show grid Y Max: 1000 🗘 Y Min: -1000 🗘 📮 🛛 MHz
voltage0	
voltage1	
voltage2	
voltage3	
	<u>4</u>
Plot type	
Frequency Domain 📫	
FFT Size: 16384 ‡	
FFT Average: 3	<u>2-</u>
FWROIIset. 0.00	
	, [∞] ∤-}
M1: -82.12 dBFS @ 2401.000 MHz	– հայտներ, լի նախարհաների հայտարերի հայտարերի հայտարերի հայտարերի հայտարերի հայտարերի հայտարերի հայտարերի հայտա
M2: -92.74 dBFS @ 2402.001 MHz	
M3: -97.58 dBFS @ 2403.001 MHz	
MH50.52 GBF 5 @ 2404.000 MH2	
	╞╧╧╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴
DEVICES	

IIO Scope – Plugins

😣 🗇 🗊 ADI IIO oscilloscope			
ile <u>S</u> ettings <u>H</u> elp			
apture DMM 😫 Debug 😫 FMComms2/	FMComms2 Advanced 😤		
Controls Block Diagram			
Active ENSM: fdd Calibration Mo	de: auto TRX Rate Governor: nominal Filter I config	FIR uration:	
ENSM Modes: fdd ‡ Calibration Mo	des: auto ‡ TRX Rate Governor Available: nominal ‡ (Non	e) 📔	
RX Path Rates: BBPLL: 983.040 ADC: 245.760 R2: 122.880 R1: 61.440 RF: 30.720 RXSAMP: 30.720			
TX Path Rates: BBPLL: 983.040 DAC: 245.760 DCXO Coarse Tune 8 DCXO Fine Tune	T2: 122.880 T1: 61.440 TF: 30.720 TXSAMP: 30.720		
AD9361 / AD9364 Receive Chain			
Enable FIR Filter RF Bandwidth(MHz):	Sampling Rate (MSPS): RX LO Frequency(MHz): RF Port Select Tracking) adrature	
18.000 🗘	30.720000 \$ 2400.999998 \$ B_BALANCED \$		
	Fastlock Profile: 0 \$ Store Recall		
RX 1	RX 2	C	
Hardware Gain(dB): 19.00	Hardware Gain(dB): 71.00		
RSSI(dB): 42.00 dB	RSSI(dB): 118.00 dB		
Gain Control: slow_attack	Gain Control: slow_attack		
Gain Control Modes: slow_attack 💲	Gain Control Modes: slow_attack 💲		
AD9361 / AD9364 Transmit Chain			
Enable FIR Filter RF Bandwidth(MHz):	Sampling Rate (MSPS): TX LO Frequency(MHz): RF Po	ort Select	

GNU Radio Plugin

- Two base classes
 - IIO Sink, Transmit data to a IIO device
 - IIO Source, Receive data from a IIO device
- Can select device and inputs/outputs
- Built-in support for Interpolation/Decimation

GNU Radio Plugin

- Possible to subclass IIOSink/IIOSource
 - e.g. to implement device specific specialization
 - GUI
 - Setting attributes
 - Current examples:
 - FMCOMMS2 Sink
 - FMCOMMS2 Source

Gnu Radio Plugin

Demo

• FM radio receiver

Demo Setup

- AD-FMCOMMS3-EBZ (AD9361)
- Zed Board (ZYNQ FPGA) running Linux with AD9361 IIO driver and IIOD
- Laptop running GNU Radio with the IIO plugin
- Laptop connected to ZED board via Ethernet

Demo Flow

- Capture data in the FM radio spectrum
- Stream it from the ZED board to the Laptop
- Decode the FM radio stream in GNU radio
- Playback FM radio on the Laptops speaker

Demo GNU Radio Canvas

Live Demo

Further information

- https://github.com/orgs/analogdevicesinc
 - https://github.com/analogdevicesinc/libiio
 - https://github.com/analogdevicesinc/iio-oscilloscope
 - https://github.com/analogdevicesinc/linux
 - https://github.com/analogdevicesinc/gnuradio
- http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals
- http://analogdevicesinc.github.io/libiio/
- http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
- https://wiki.analog.com/resources/tools-software/linux-software/gnuradio
- https://archive.fosdem.org/2012/schedule/event/iio.html
- http://events.linuxfoundation.org/sites/events/files/slides/iio_high_speed.pdf

IIO – Device Graph (Future)

- Use media controller framework to expose device topology
 - Allows userspace to auto-discover processing pipeline
 - Better support for standard components

IIO – Zero Copy (Future)

- Use vmsplice and friends to provide zero copy
 - High-speed network streaming without CPU interaction
 - High-speed disk writes/reads without CPU interaction