
IgProf
The ignominious profiler. A generic memory and

performance profiler for linux applications.

Giulio Eulisse
Fermi National Accelerator Laboratory

http://igprof.org

http://igprof.org

Opinions expressed in this
presentation are mine, only mine,
and solely mine…. buahahahah

Why a profiler?

Where I work

CMS experiment @ CERN LHC

Where I work

Over 4000 researchers...

Where I work

Source: http://cms.web.cern.ch/content/cms-collaboration

43 countries, 191 institutes

http://cms.web.cern.ch/content/cms-collaboration

What do we do?

+ =

5c646f63756d656e74636c6173735b613470617065722c313270745d7b61727469636c657d0a0a5c7573657061636b61676
57b657073667d0a5c7573657061636b6167657b67726170686963737d0a0a0965787477696474683d362e35696e0a5c6f64
64736964656d617267696e3d302e30696e0a5c6576656e736964656d617267696e3d302e30696e0a0a0a6577636f6d6d616
e647b5c6d65747d7b0d6d5c2c2f5c215c215c215c21455f7b547d7d0a0a6577636f6d6d616e647b5c65747d7b0d6d20455f
547d0a0a6577636f6d6d616e647b5c7a7072696d657d7b5a5e5c7072696d657d0a0a086567696e7b646f63756d656e747d0
a0a6f696e64656e747b086620546865205374616e64617264204d6f64656c3a205468652046696e616c204c616772616e67
69616e7d0a0b73706163657b302e31696e7d0a0a0a6f696e64656e740a4672616e6369732048616c7a656e2c20616e64204
16c616e20442e204d617274696e2c0a7b5c697420517561726b7320616e64204c6570746f6e733a20416e20496e74726f64
7563746f727920436f7572736520696e204d6f6465726e205061727469636c6520506879736963732c7d0a4a6f686e20576
96c6579205c2620536f6e732c202831393834292e0a0b73706163657b302e31696e7d0a0a0a6f696e64656e740a546f2073
756d6d6172697a6520746865207374616e6461726420285765696e626572672d53616c616d29206d6f64656c2c207765206
7617468657220746f67657468657220616c6c207468650a696e6772656469656e7473206f6620746865204c616772616e67
69616e2e2054686520636f6d706c657465204c616772616e6769616e2069733a0a0a086567696e7b63656e7465727d0a086
567696e7b746162756c61727d7b726c6c7d0a202020245c6d61746863616c7b4c7d203d240a202020202020202020202020
2020202620242d0c7261637b317d7b347d207b086620577d5f7b5c6d750a757d205c63646f74207b086620577d5e7b5c6d7
50a757d0a2020202020202020202020202020202020202d0c7261637b317d7b347d20202020202020425f7b5c6d750a757d
20202020202020202020202020425e7b5c6d750a757d240a2020202020202020202020202020202620245c6c6566745c7b2
0086567696e7b61727261797d7b6c7d0a205c6d626f787b57
7d5e7b5c706d7d2c205c6d626f787b5a7d2c205c67616d6d61205c6d626f787b206b696e657469637d205c0a20202020202
0205c6d626f787b656e65726769657320616e647d20202020202020202020
205c0a205c6
d626f787b73656c662d696e746572616374696f6e737d0a20
5c656e647b61727261797d0a2020202020202020202020202020202020200d696768742e240a20202020202020202020202
02020205c20262026205c0a202020202020202020202020202020262024086567696e7b61727261797d7b6c7d0a20202020
20202020202020202020202020202b0861727b4c7d5c67616d6d615e7b5c6d757d5c6c6566742820695c7061727469616c5
f7b5c6d757d0a20
20202d670c7261637b317d7b327d7b0866200961757d205c63646f74207b086620577d5f7b5c6d757d0a202020202020202
02d67270c7261637b597d7b32
7d425f7b5c6d757d0a200d696
7687429204c205c0a2020202020202020202020202020202020202b0861727b527d5c67616d6d615e7b5c6d757d5c6c6566
742820695c7061727469616c5f7b5c6d757d0a202
020202020202020202020202020202d67270c7261637b597d7b327d425f7b5c6d757d0a2020202020202020202020202020
200d69676874292052205c0a20202020202020202020202020202
02020205c656e647b61727261797d240a2020202020202020202020202020202620245c6c6566745c7b20086567696e7b61
727261797d7b6c7d0a205c6d626f787b6c6570746f6e20616
e6420717561726b7d202020202020202020205c0a205c6d62
6f787b6b696e6574696320656e6572676965737d202020202020202020205c0a20202020202020202020202020202020202
020202020202020205c6d626f787b616e642074686569727d20202020202020202020202020202020205c0a202020202020
205c6d626f787b696e746572616374696f6e7320776974687d20202020202
02020205c0a205c6d626f787b577d5e7b5c706d7d2c205c6d
626f787b5a7d2c205c67616d6d61205c0a205c656e647b617
27261797d0a2020202020202020202020202020202020200d696768742e240a2020202020202020202020202020205c2026
2026205c0a2020202020202020202020202020202620242b5c6c6566747c5c6c6566742820695c7061727469616c5f7b5c6
d757d0a202d670c7261637b317d7b327d7b08
66200961757d205c63646f74207b086620577d5f7b5c6d757d0a202
020202020202020202d67270c7261637b597d7b327d425f7b5c6d757d0a20
20202020200d6967687429205c7068690a202020202020202020202020202020202020200d696768747c5e32202d2056285
c70686929240a2020202020202020202020202020202620245c6c6566745c7b20086567696e7b61727261797d7b6c7d0a20
205c6d626f787b577d5e7b5c706d7d2c205c6d626f787b5a7d2
c205c67616d6d612c205c6d626f787b20616e642048696767737d205c0a20
2020202020205c6d626f787b6d617373657320616e647d202
020202020202020205c0a205c6d626f787b636f75706c696e
67737d205c0a20202020202020202
020202020202020202020202020202020205c656e647b61727261797d0a2020202020202020202020202020202020200d69
6768742e240a2020202020202020202020202020205c20262026205c0a2020202020202020202020202020202620242d284
75f310861727b4c7d5c70686920520a202b475f320861727b4c7d5c706869
5f6320520a202b5c6d626f787b6865726d697469616e20636f6e6a7567617
4657d292e240a2020202020202020202020202020202620245c6c6566745c7b20086567696e7b61727261797d7b6c7d0a20
205c6d626f787b6c6570746f6e20616e6420717561726b7d202
05c0a205c6d626f787b6d617373657320616e647d20202020
202020205c0a205c6d626f787b636f75706c696e6720746f2
048696767737d205c0a205c656e647b61727261797d0a2020
202020202020202020202020202020200d696768742e24205c0a5c656e647b746162756c61727d0a5c656e647b63656e746
5727d0a0a0a6f696e64656e740a244c242064656e6f7465732061206c6566742d68616e646564206665726d696f6e20286c
6570746f6e206f7220717561726b2920646f75626c65742c20616e6420522064656e6f74657320610a72696768742d68616
e646564206665726d696f6e2073696e676c65742e0a0a5c656e647b646f63756d656e747d0a

Mostly, we use 1.3 terawatt hours yearly* to
smash particles and we take digital pictures
of the result with a sophisticated camera.
Every single collision, a “RAW Event”, is
roughly 1 MB. LHC delivers 10^9 events per
second (i.e. 1 PB) when running, which
become a few hundreds evt/s after a first
level of (HW) “trigger”. We stored to disk
roughly 10^9 events in 2011-2013 period

Source: http://home.web.cern.ch/about/engineering/powering-cern

http://home.web.cern.ch/about/engineering/powering-cern

What do we do?

We process detector data with in custom written software and
quickly obtain PhD theses and conference papers with it.

Over 5M SLOCs custom code
Large C++ / Python / Fortran codebase, developed over almost two decades by over 1300
researchers ranging from master students to Nobel prize candidates. Software comprises
complex pattern recognition algorithms, data analysis tools and simulations. Small core of
professional software engineers mostly doing application framework, release integration and
QA.

Large and diverse application set
Many different “workflows” depending on the the kind of simulation / analysis being done.
Over 3000 shared objects chained via python configuration language. Each workflow has
~300 MB of CODE sections, sparse in ~600 shared libraries. Roughly 600’000 symbols
present in the process image. Over 300 level deep call-trees are the norm. 2GB RSS footprint
on average, large memory churn (up to 1M allocation per second). No single offender.

Large working dataset
~12 PB of RAW data acquired in 2011-13, more than double that if we count the processed
via the WLGC Grid using 100k cores sparse over 5 continents. We expect a 2-3 order of
magnitude increase in data volume in the next 10 - 15 years.

CMSSW...

9

...the WLGC Grid...
Tier-0 (CERN):
data recording,
reconstruction
and distribution

Tier-1:  
permanent
storage, re-
processing,
analysis

Tier-2:  
Simulation, end-
user analysis

WLCG:
An International collaboration to distribute and analyse LHC data
Integrates computer centres worldwide that provide computing and storage resource into a single
infrastructure accessible by all LHC physicists.

10-100 Gb links

> 2 million jobs/day

500 PB of storage

~350’000 cores

nearly 170 sites,  
40 countries

Courtesy of Ian Bird

CMSSW
(CMSSW_7_3_0)

Firefox
(34.0.5)

OpenOffice
Writer

(4.1.1)

PovRay
(3.7)

Clang
(3.5)

SLOCs 5.5M 6.4M 4.7M 0.6M 0.9M

Initial release 2005 2002 2002 1991 2007

Contributors >1300 >1200 >140 ~40 ~200

Typical memory
footprint (RSS) ~2 GB ~0.3 GB ~0.2 GB ~0.2 GB

Primary
languages

C++, Python,
Fortran

C / C++,
Javascript C++ / Java C / C++ C / C++ / ObjC

CMSSW in perspective

11

• We needed a memory leak detector, because
that’s where the first loop issues of big software
stacks always are.

• In 2003 a brave duo (Lassi Tuura and yours truly)
decided waiting for Valgrind (a fantastic tool, BTW)
to finish was not an option.

• MemProfLib was born

A bit of history

12

A one day prototype:

• Malloc Hooks
Used __malloc_hook & c. to keep track of allocation / deallocations. Allocation
not freed by the end of the program were reported as possible leaks. Code
injected into programs via standard LD_PRELOAD mechanism, using atexit to
trigger the dump.

• Flat output
xml (sigh) output, analyzed by some XSLT magic (double sigh).

• Instant gratification
It’s quite amazing how much something like this can already catch. Always prove
yourself you can do something cool before actually over-designing your tools.

MemProfLib

13

...
auto foo = new std::vector<SomeClass *>(); // sigh…
for (int i = 0; i < 1000000; ++i)
foo->push_back(new SomeClass()); // double sigh

delete foo; // triple sigh..
...

...any reference to real facts or
persons is purely coincidental...

14

ignominy |ˈɪgnəәmɪni|
noun [mass noun]
public shame or disgrace: the ignominy of being imprisoned.
ORIGIN mid 16th cent.: from French ignominie or Latin
ignominia, from in- ‘not’ + a variant of nomen ‘name’.

ignominy |ˈɪgnəәmɪni|
noun [mass noun]
public shame or disgrace: the ignominy of being imprisoned.
ORIGIN mid 16th cent.: from French ignominie or Latin
ignominia, from in- ‘not’ + a variant of nomen ‘name’.

The Ignominious Profiler was born...

Performance & memory profiling, with backtraces

Should work in managed environment
• No kernel support required
• No superuser privileges required

Target audience: people in CMS
• Low overhead must be able to allow interactive usage
• Results must be understandable to non software professionals

Target application: CMS software
• Support for dynamic code / libraries
• Multiplatform: x86 / x86_64 / ARM32 / ARM64

Key design decisions

17

• Dynamic instrumentation (IgHook)

• Memory (by hooking into malloc) and performance
profiler (via SIGPROF / SIGALRM)

• Full backtrace information (via libunwind)

• Analyser tool (igprof-analyse)

• Simple web frontend (igprof-navigator)

Reworking the internals

18

Avoid extensions and platform specific APIs
__malloc_hook & c. are glibc specific.

Flexibility
We wanted to hook into more than just malloc (e.g. read / write statements).

Safety
We have to hook into various places to make sure we can catch things which
interfere with the profiler (e.g. fork), or even attempts to disable it (e.g. explicit
calls to signal). Moreover we can safely hook into exit and _exit and dump
the profile at that point.

Dynamic instrumentation

19

We sit on the shoulders of giants
(1) Jeffrey Richter, “Load Your 32-bit DLL into Another Pro- cess’s Address

Space Using INJLIB”, Windows System Journal, Vol 9 No 5, May 1994.
(2) Shaun Clowes, “injectso: Modifying and Spying on Running Processes Under

Linux and Solaris”, The Black Hat Briefings, 2001, Amsterdam, http://
www.blackhat.com/presentations/bh-europe-01/shaun-clowes/bh-europe-01-
clowes.ppt

(3) “DynInst: An Application Program Interface (API) for Run-time Code
Generation”, http://www.dyninst.org/

(4) https://github.com/rentzsch/mach_inject
(5) https://github.com/rentzsch/mach_override

Dynamic instrumentation

20

http://www.blackhat.com/presentations/bh-europe-01/shaun-clowes/bh-europe-01-clowes.ppt
http://www.dyninst.org/
https://github.com/rentzsch/mach_inject
https://github.com/rentzsch/mach_override

41 56 push %r14
41 55 push %r13
41 54 push %r12

55 push %rbp
53 push %rbx
…
rest of function body
…

c3 retq

Symbol start } Almost every
symbol has a

preamble to save
registers, frame
pointer, etc. We
need enough

bytes to replace
part of it with a

jump to our own
code.

Dynamic instrumentation

21

e9 9f 3c 01 00 jmpq 0x41f004
90 nop
55 push %rbp
53 push %rbx

55 push %rbp
53 push %rbx
…
rest of function body
…

c3 retq

41 56 push %r14
41 55 push %r13
41 54 push %r12

Jump to wrapper function

Patch area (we might have
copied %rip relative

instructions in the
preamble)

Trampoline structure

Jump to original code

TrampolineOriginal

22

e9 9f 3c 01 00 jmpq 0x41f004
90 nop
55 push %rbp
53 push %rbx

55 push %rbp
53 push %rbx
…
rest of function body
…

c3 retq

41 56 push %r14
41 55 push %r13
41 54 push %r12

Jump to wrapper function

Patch area (we might have
copied %rip relative

instructions in the
preamble)

Jump to original code

Trampoline structure
Original Trampoline

23

e9 9f 3c 01 00 jmpq 0x41f004
90 nop
55 push %rbp
53 push %rbx

55 push %rbp
53 push %rbx
…
rest of function body
…

c3 retq

41 56 push %r14
41 55 push %r13
41 54 push %r12

Jump to wrapper function

Patch area (we might have
copied %rip relative

instructions in the
preamble)

Jump back to
original code

Jump to original code

Trampoline structure
Original Trampoline

24

CHAPTER 3. ENVIRONMENT 31

first few instructions

of the original

next

.

.

.

return

original

jump to the wrapper function

first few instructions

of the original

jump to the rest of the original function

patch area

trampoline

copy

jump

Figure 3.1: The trampoline memory block.

The first few instructions of the original function to be instrumented are
overwritten with a jump instruction. The target of the jump is the beginning
of the trampoline. A data structure, called a hook, is associated with the
trampoline. The hook contains a function pointer to the location in the
trampoline where the original first few instructions are stored. This function
pointer is called the chain. IgProf uses a wrapper function in order to provide
a replacement function with the hook structure as a function argument in
addition to the original arguments. The wrapper function then calls the
replacement function.

.

.

.

original();

.

.

.

caller

jump trampoline

next

.

.

.

return

original

jump wrapper

first few instructions

of the original

jump next

patch area

trampoline

.

.

.

replacement();

.

.

.

return

wrapper

.

.

.

hook.chain();

.

.

.

return

replacement

chain

.

.

.

hook

1 2

3

4 5

6

7

89

Figure 3.2: Function call to a an instrumented function.

Figure 3.2 shows the transfer of control when an instrumented function
is called. When the caller function calls the original function, the control
is transferred to the beginning of the instrumented original function (step
1) as expected. Because the first instruction of the instrumented function
is now a jump, the execution transfers to the beginning of the trampoline
(step 2). The trampoline also starts with a jump instruction; this time the
target is the wrapper function (step 3). The wrapper function calls the
replacement function (step 4), adding the hook structure to the arguments.
The replacement function can inspect or modify the arguments, keep track
of resource usage or just count the number the function has been called. At
some point the replacement function usually calls the original function by
using the chain function pointer of the hook structure (step 5). The chain

from Filip Nybäck thesis25

Relocability
%rip relative instructions in the preamble need to be properly relocated.

x86 assembly complexity
Parsing the preamble on x86 is not trivial, due to complexity of instruction set.

Short branches on ARM64
On ARM64 we likely have only 1 instruction (4 bytes) available for the jump. We limit
trampoline distance so that we can use a B instruction (±128MB jump ought to be
enough for everyone…).

Specificity to the rescue
The problem is simplified by the fact that usually we care about an handful of symbols
so the phase space of the problem is usually limited (malloc, calloc, exit,
signal, fork, etc.). For this reason the above are not usually an issue for standard
memory and performance profiling, however they might make generic instrumentation
complicated (if not impossible at all).

Issues with DI

26

Hooks into malloc & c
It only profiles heap allocations do not expect your 64MB array on stack to popup.

Three different kind of counters:

• MEM_TOTAL: sum of allocations in a call-path

• MEM_LIVE: sum of allocations from a given call-path,
still present when profile dumps results

• MEM_MAX: largest single allocation in call-path

For each counter we store the number of calls and the
allocated bytes. “Peak” mode also available.

Memory profiling

27

<igprof started here>
...
for (int n = 1; n <= 10; ++n)
malloc(1);

...
<igprof dumps report>

Counts Calls Peak

MEM_LIVE 10 10 10
MEM_TOTAL 10 10 10
MEM_MAX 1 10 1

MEM_LIVE and MEM_TOTAL
are the same if the is no

deallocation

Memory profiling

28

<igprof started here>
...
for (int n = 1; n <= 10; ++n)
malloc(1);

...
<igprof dumps report>

Counts Calls Peak

MEM_LIVE 10 10 10
MEM_TOTAL 10 10 10
MEM_MAX 1 10 1

MEM_MAX tracks single
allocations

Memory profiling

29

<igprof started here>
...
for (int n = 1; n <= 10; ++n)
malloc(n);

...
<igprof dumps report>

Counts Calls Peak

MEM_LIVE 55 10 55
MEM_TOTAL 55 10 55
MEM_MAX 10 10 10

Counts are the sum of
allocations, calls are how

many times we called
malloc

Memory profiling

30

<igprof started here>
...
for (int n = 1; n <= 10; ++n)
free(malloc(n));

...
<igprof dumps report>

Counts Calls Peak

MEM_LIVE 0 0 10
MEM_TOTAL 55 10 55
MEM_MAX 10 10 10

Once you start deallocating
the difference between

MEM_LIVE and
MEM_TOTAL is obvious

Memory profiling

31

<igprof started here>
...
for (int n = 1; n <= 10; ++n)
free(malloc(n));

...
<igprof dumps report>

Counts Calls Peak

MEM_LIVE 0 0 10
MEM_TOTAL 55 10 55
MEM_MAX 10 10 10

MEM_LIVE in peak mode
gives the largest block of
memory at one point in

time

Memory profiling

32

Counts Calls Peak

MEM_LIVE n n n
MEM_TOTAL 𝚺1..n 𝚺1..n 𝚺1..n
MEM_MAX n n n

<igprof started here>
...
for (int n = 1; n <= 10; ++n)
{
void *x = malloc(1);
<igprof dumps report*>
free(x);

}
...

MEM_LIVE becomes a “likely
leaks” checker!

Dumps can be triggered
by calling a public

symbol or by writing to a
file specified by the -D
option. In this particular
case you get n reports.

Memory profiling

33

Malloc overhead profiler (-mo)
It’s pretty common especially in “naive” Object Oriented code to underestimate
the overhead of small allocations. For example malloc on x86_64 allocates at
16 bytes borders and keeps at least one extra pointer for each allocation. The -
mo option tries to account for “unseen” (by the programmer) overhead of small
allocations via malloc.

RSS profiling
When you are trying to reduce the RSS of your application (for example
because your batch systems kills you if you are over 2GB of RSS), it’s important
to remember that memory always gets mapped into real memory in pages. A
single 1 byte allocation in a new page will swap in the associated 4Kb page.
IgProf dumps contain the heap dump, and can report pages rather than bytes.

Allocations are not what they seem

34

Allocations are not what they seem

Some CMSSW memory map
35

More goodies
File descriptor profiling
The previous concepts can actually be extended for any workflow which handles
generic “resources” with a “cost” attached. For example you can count the
number of writes / reads to a file by hooking into read / write.

Tracing exceptions
A very common pattern we had was to use C++ exceptions as a way to
communicate between different parts of the program. This is both slow and leads
to unmaintainable code.

Empty memory profiler
Work done by Jakob Blomer @ CERN / SFT. Useful to tune your I/O buffers. On
allocation, fill memory with some magic pattern (usually zeros or 0xaa depending
on what we are looking for). On free, scan for the same magic pattern counting
untouched 4KB pages. At profile dump we report untouched pages.

36

4K page

char MyBuffer*

4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page

0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa

On allocation, we fill
memory with some

magic pattern
(usually zeros or

0xaa depending on
what we are looking

for).

*for simplicity sake let’s assume the buffer is 4KB aligned, works similarly if not.

Empty memory profiling

37

4K page

char MyBuffer*

4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page

0x24 0x20 0x0a 0x61 0x62 0x6c 0x61 0x09 0x69
0x6d 0x65 0x73 0x7b 0x08 0x66 0x20 0x48 0x7d
0x20 0x3d 0x20 0x7b 0x08 0x66 0x20 0x4a 0x7d
0x20 0x2b 0x20 0x7b 0x7b 0x5c 0x70 0x61 0x72
0x74 0x69 0x61 0x6c 0x7b 0x08 0x66 0x20 0x44
0x7d 0x7d 0x5c 0x6f 0x76 0x65 0x72 0x7b 0x5c
0x70 0x61 0x72 0x74 0x69 0x61 0x6c 0x20 0x74
0x7d 0x7d 0x20 0x24 0x0a

As the buffer is
used, the magic
pattern is lost.

*for simplicity sake let’s assume the buffer is 4KB aligned, works similarly if not.

Empty memory profiling

38

4K page

char MyBuffer*

4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page 4K page

4K page 4K page 4K page 4K page 4K page 4K page

On deallocation
of the buffer we

report all the
pages which still
has the magic
pattern intact

4K page

0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa 0xaa
0xaa 0xaa 0xaa

*for simplicity sake let’s assume the buffer is 4KB aligned, works similarly if not.

Empty memory profiling

39

How it works
Uses SIGPROF to have time uniform callbacks every ~ 1/100s. Callback stores
the backtrace of where the signal happened. Supports both CPU and wall-clock
time. Biggest advantage is the limited interference with the program itself.

It does converge
If you wait long enough, this actually converges to the right distribution of time
spent in any given function. Works brilliantly for repetitive payloads.
Unsurprisingly results correlate with MEM_TOTAL.

Not so easy
Of course the difficult part here is making sure you are not interrupting something
which shall not be interrupted. For example igprof has problems when a signal
happens in dl_iterate_phdr. Another issue was making sure that we
accounted for the time spent in fork due to the large RSS which had to be
duplicated.

Performance profiling

40

< 0.5%

0.5 - 1%

Time spent in functions with more than 1% of contribution

Vast majority of the time is spent in functions which
themselves have little contributions. Say thanks to C++

encapsulation.

41

< 0.5%

Number of functions with more than 0.5% of contribution

…and things look even worse if we count the symbols, rather than
their contribution… Only 27 symbols have more than 0.5% of the time

spent in them, out of ~6000 which gets counts...

42

void bar(int i)
{
malloc(i);

}

void foo()
{
malloc(1);
bar(1);

}

int main(int, char **)
{
foo();
bar(2);

}

In large programs
what is actually

interesting is to know
not only which

functions allocated
most of the memory,

but why.

Call tree

43

void bar(int i)
{
malloc(i);

}

void foo()
{
malloc(1);
bar(1);

}

int main(int, char **)
{
foo();
bar(2);

}

main

foo

Counts Calls Peak
MEM_LIVE 1 1 1

MEM_TOTAL 1 1 1
MEM_MAX 1 1 1

Every time an
instrumented function

is called we
determine the full

calltree.

Call tree

44

void bar(int i)
{
malloc(i);

}

void foo()
{
malloc(1);
bar(1);

}

int main(int, char **)
{
foo();
bar(2);

}

bar

main

foo

Counts Calls Peak
MEM_LIVE 1 1 1

MEM_TOTAL 1 1 1
MEM_MAX 1 1 1

Counts Calls Peak
MEM_LIVE 1 1 1

MEM_TOTAL 1 1 1
MEM_MAX 1 1 1

Call tree

45

void bar(int i)
{
malloc(i);

}

void foo()
{
malloc(1);
bar(1);

}

int main(int, char **)
{
foo();
bar(2);

}

bar

main

foo bar

Counts Calls Peak
MEM_LIVE 2 1 2

MEM_TOTAL 2 1 1
MEM_MAX 2 1 2

Counts Calls Peak
MEM_LIVE 1 1 1

MEM_TOTAL 1 1 1
MEM_MAX 1 1 1

Counts Calls Peak
MEM_LIVE 1 1 1

MEM_TOTAL 1 1 1
MEM_MAX 1 1 1

Call tree

46

Backtrace using libunwind
This was initially done using backtrace(), but then we switched to
libunwind*, due to reliability issues.

Optimizing libunwind
In our application we had up to 1M allocations per second which made memory
profiling too slow due to many unwindings. Lassi implemented a fast path which
does not do the full DWARF unwind but a simpler stack walk with fallback to the
full blown method only when it does not work.

Contributing back to libunwind
• x86_64 implementation by Lassi Tuura
• ARM32 / ARM64 implementation by Filip Nybäck (30x speedup reported!)
• Volunteers wanted to implement it on Power Architecture ;-)

*: http://www.nongnu.org/libunwind/

Fast path backtracing

47

http://www.nongnu.org/libunwind/

Why not expanding beyond malloc?
Give user the flexibility to hook into any generic function. Needs to know the
mangled symbol name and register signature.

Precise results
• CALL_TIME: total time spent in the requested function (via RDTSC)
• CALL_COUNT: number of times a function has been called

Support GCC -finstrument-functions
When recompiling is an option, GCC and others support instrumenting every
function (including inlines) via the -finstrument-functions flag which
introduces __cyg_profile_func_enter and __cyg_profile_func_exit
entry / exit points.
Overhead too large to actually think about doing it for every compilation unit,
probably more interesting to understand exactly who calls what.

Generic Instrumentation

48

What is it?
Performance Application Programming Interface (PAPI) provides an interface and methodology
for use of the performance counter hardware found in most major microprocessors. Very nice
interface to read performance counters (using either of perf_events, PerfCtr, Perfmon). Requires
kernel component so it’s optional in igprof. http://icl.cs.utk.edu/papi/.

How it works?
Similar to the Performance profiler, we get counted at regular intervals and check PAPI counters
at that point. If the counter overflows we count 1 in the igprof results. While this should
converge, deciding the overflow level is currently completely empiric.

Energy measurements
Recently there has been big noise about “Power efficient computing”. Intel provides nice
counters which allow to measure power consumption with a low granularity (RAPL). Given PAPI
in particular supports RAPL, we have started doing tests using it. The main problem is that
energy consumption is really a global quantity, not a local (to the application) one. Not clear if it
simply correlates to CPU performance. Different metrics (e.g. how many times CPU changes
state)?

PAPI Support

49

http://icl.cs.utk.edu/papi/

igprof-analyse
Dumping a 50MB gzipped file full of profile data is useless if you cannot extract
information from it. igprof-analyse takes a profile dump and produces
(somewhat) human readable reports from it. Tries hard to be accurate when
doing symbol name demangling, using nm and gdb.
It also aggregates call-paths, allows applying various filters on the call-tree, both
by changing contents of single nodes and by merging nodes together.
Exports results in a gprof like text file, sqlite db, or JSON object

igprof-navigator
A poor man cgi script / python server which allows you to navigate results via a
web interface. Uses the sqlite report as input.

Analyzing results

50

gprof like report format
For each node in the callpath, we aggregate edge information for nodes going
into the selected node (i.e. callers) and nodes going out (i.e. callees).
Considered node symbol is indented to highlight it.

bar

main

foo bar

Rank % total Self Self / Children Calls / Total Function

[1] 100.0 4 0 / 4 3 main
 50.0 2 / 3 1 / 2 bar(int) [2]
 50.0 2 / 2 2 / 2 foo() [3]

Analyzing results

51

gprof like report format
Lines below the selected symbol are callees.

bar

main

foo bar

Rank % total Self Self / Children Calls / Total Function

[1] 100.0 4 0 / 4 3 main
 50.0 2 / 3 1 / 2 bar(int) [2]
 50.0 2 / 2 2 / 2 foo() [3]

Analyzing results

52

gprof like report format
Lines below the selected symbol are callers.

bar

main

foo bar

Rank % total Self Self / Children Calls / Total Function

 25.0 1 / 2 1 / 2 foo() [3]
 50.0 2 / 4 1 / 3 main [1]
[2] 75.0 3 3 / 0 2 bar(int)

Analyzing results

53

gprof like report format
Lines below the selected symbol are callers.

bar

main

foo bar

Rank % total Self Self / Children Calls / Total Function

 50.0 2 / 4 2 / 3 main [1]
[3] 50.0 2 1 / 1 2 foo()
 25.0 1 / 3 1 / 2 bar(int) [2]

Analyzing results

54

zip

main

foo bar

Sometimes it can
be useful to

rename nodes so
that slightly

different versions
of the same are

merged together.

Merging nodes in reports

55

zip

main

foo bar

zip

main

barbar

-mr “s/foo/bar/”

Merging nodes in reports

56

bar

zip

main

bar

zip

main

bar

Merging nodes in reports

57

Surviving template-ed designs
This is actually extremely useful in case of heavily template designs where (for
example) you have methods template-ed on their inputs.

class Foo {
 template <typename A>

 void useA(const A &a) { <do something with A> }
};

While normally each useA<A> would appear as a single instance (different
symbol!) using something like -mr “s/.*useA.*/Foo::useA/” allows
merging all the various small contribution from each instantiation into one single
contribution.

Merging nodes in reports

58

bar

main

foo bar

libbar.so

a.out

libbar.solibfoo.so

-l

Might not be so interesting for few libraries,
but it is if you have 600 between libraries

and plugins

Merging libraries

Sometimes we want to
distinguish between
same symbol which
gets invoked from
different call path.

One simple solution is
to rename symbols

associated to a node
according to their

parents.

bar

main

foo bar

Splitting by ancestor

60

bar

main

foo bar

Splitting by ancestor

fromFoo

main

foo bar

-ma “foo>bar/fromFoo”

61

Instant gratification
igprof–navigator is a simple CGI script which we use to present reports as webpages.
Especially in an environment of non software developers, it is important to have a clickable
report at which experts can use to drive non-experts through performance optimization.

Clang examples
MEM_LIVE, x86_64, dumped while compiling a monster machine generated file: http://
cern.ch/go/k9Sw

Firefox benchmark (RoboHornet) examples
MEM_TOTAL, x86_64: http://cern.ch/go/nG7C , PERF_TICKS, x86_64: http://cern.ch/go/H9ct

CMSSW examples
…and for the High Energy Physics enthusiasts among you, a few CMS experiment software
examples:
PERF_TICKS, x86_64: http://cern.ch/go/NWg9, PERF_TICKS, ARM64: http://cern.ch/go/
7M9D

IgProf web

62

http://cern.ch/go/k9Sw
http://cern.ch/go/nG7C
http://cern.ch/go/H9ct
http://cern.ch/go/NWg9
http://cern.ch/go/7M9D

IgProf web

63

IgProf web

64

We use Free and Open Source Software
CMS experiment is a eager user of FOSS, and we evangelise with other
experiments and CERN about its benefits. We actively report bugs and provide
patches to tools like gcc, glibc and others.

We write FOSS
IgProf itself is GPLv2. Lassi and Filip contributed back to libunwind the fast path
tracing which is now in upstream and available for everyone to use.

We train to use FOSS
We see lots of students coming through CERN and they all get a full immersion
in using FOSS tools for their work. Kids get in they only know about Visual Studio
and get out being vim wizards.

Contributing to FOSS

65

Patches & ideas welcome

CERN / CMS institutes summer programs
CERN / CMS institutes have various student programs, where IgProf is usually one of
possible projects

CERN @ GSoC
CERN has been mentoring organization for the last few years: http://cern.ch/go/
KM7W.

IgProf was part of GSoC2014
Great work by Filip Nybäck from Aalto University
• ARM64 port itself.
• Fast path backtrace in libunwind also for ARM64
• PAPI support and initial energy profiling as a bonus

Working on IgProf

66

http://cern.ch/go/KM7W

Support for more architectures
We have a POWER7 system and we might get a POWER8 dev board. x32 support is also
missing and requested by a few people. This should probably in a contribution to
libunwind as well.

“Big Data” igprof
When running igprof on the validation of your integration builds you end up with a bunch
of data which from which to extract sensible information. Right now this has to be done by
hand. The idea would be pushing igprof reports to some key-value storage and the use
automated tools to spot problems in your code.

Python / Javascript backtrace support
Right now, when profiling mixed C / C++ code invoking / invoked by scripting languages
like python or javascript, igprof will happily show the cost of the interpreter / JIT itself, not
the actual python code. The idea would be to instrument…

Profile more counters via PAPI

Ideas for GSoC 2015?

67

License x86 ARM Power
Architecture HW counters

Generic
Instrumentation Heap Sampling kernel /

root

igprof GPL ✔ ✔ ✔* ✔ ✔ ✔

gprof GPL ✔ ✔ ✔ ✔

Google
Performance

Tools
BSD ✔ ✔ ✔ ✔ ✔

Oprofile GPL ✔ ✔ ✔ ✔ ✔

perfctr GPL ✔ ✔ ✔ ✔ ✔ ✔

perfmon2 BSD ✔ ✔ ✔ ✔ ✔ ✔

Pick your favorite

...and many others...
68

Andreas Pfeiffer, Chris Jones, 
David Abdurachmanov, Filip Nybäck, Ian Bird,
Jakob Blomer, Jukka Nurminen, Lassi Tuura, Liz
Sexton-Kennedy, Lothar Bauerdick, Lucas Taylor,
Matevž Tadel, Mikko Kurkela, Peter Elmer, René

Meusel, Robert Lupton, Shahzad Muzaffar, Stephen
Reucroft, Vincenzo Innocente

All Tintin pictures claimed to be “Fair use”, all trademarks are property of their respective owners.

Thanks!

@ktf

giulio.eulisse@cern.ch

@ktf

http://igprof.org

Contact info

70

