Courtney Robinson

courtney@zcourts.com

31 Jan 2015

Backaground from Gephi

http://zcourts.com
mailto:courtney@zcourts.com

| can be found around the web as “zcourts”, Google it...
The web is one very prominent example of a graph

Too big for a single machine

S0 we must split or “partition” it over multiple

Partitioning is hard...in fact, it has been shown to be np-
complete

All we can do Is edge closer to more “optimal” solutions
The Tesseract is an ongoing research project

lts focus is on distributed graph partitioning

The rest of this presentation is a series of solutions, which
together, takes one step closer to faster distributed graph
processing

zcourts.com

http://zcourts.com

Terminology

Graph - A graph G is made up of a set of vertices and edges,

G = (V,E)
Q/P\\@@ D
\® >®

Vertex - Smallest unit of user accessible datum

Edge - Connects two vertices, may have a direction

Property - Key value pair available on an Edge or Vertex

AN
{ ~§2,)<'>\
\Qsé /

zcourts.com

http://zcourts.com

AIms of the Tesseract

1. Implement distributed eventually consistent graph
database

2. Develop a distributed graph partitioning algorithm

3. Develop a computational model able to support both
real time and batch processing on a distributed

graph

zcourts.com

http://zcourts.com

Aims of the Tesseract

1. Implement distributed eventually
consistent graph database

/ S+

| <§f§<§>

5 VA4
Zcourts.com

http://zcourts.com

CRDTs...iIn one slide™

http://zcourts.com

CRDTs...iIn one slide™

Contlict free replicated data types

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

R DA
9. 9.9,
- ..Y'

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative

R DA
9. 9.9,
- ..Y'

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 14+2=2+1

R DA
9. 9.9,
- ..Y'

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent
6 zcourt\é.cé;/m

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent
6 zcourt\é.cé;/m

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

/" .
V4 'Y, A
| N "’&'5. &

LA
g |‘Y

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT
Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties... Sets!

/" .
V4 'Y, A
| N "’&'5. &

LA
g |‘Y

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT
Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties... Sets!

/" .
V4 'Y, A
| N "’&'5. &

LA
g |‘Y

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT
Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties... Sets!

Addition with sets is done using U

/0 \\
V4 > A
| N "’&'5. &

.00
“F |‘Y

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT
Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties... Sets!

Addition with sets is done using U

(1u2)u3=1u(2u3) Associative

/0 \\
V4 > A
| N "’&'5. &

.00
“F |‘Y

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT
Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties... Sets!

Addition with sets is done using U

(1u2)u3=1u(2u3) Associative

Commutative lu2=2u"

/" .
V4 'Y, A
| N "’&'5. &

LA
g |‘Y

zcourts.com

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

CRDTs...iIn one slide™

Contlict free replicated data types
|.e provably eventually consistent (shapiro etal) replicated & distributed data
structures.

(1+2) + 3 = 1 + (2+3) Associative
Commutative 1+2=2+1
1+ 1+ Not |[dempotent

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT
Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties... Sets!

Addition with sets is done using U

A .
(1u2)u3=1u(2u3) ssoclative
Commutative 1u2=20u1
Tul="1 ldempotent! /
0 zcourfé.célm

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

| lled, two sliges.. .

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

§ :
l
l

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a)
{) .
)
)

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a)

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a)

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a)

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a)

v{a)\,an}

zcourts.com

http://zcourts.com

| lled, two sliges.. .

» Several types of CRDTs are available.
* They proy with “Strong Eventual Consistency”
| ' agate we're provably guaranteed

Each node adds “a”
with a unique tag

1) . |
ocally Removed”...add wins!

2

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a)

v{a)\,an}

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

add(a) del(a)

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

del(a)
>
.{‘aﬂ} ®
{-an}
~{an,an} “ap,-an)
TN
3
S VA

zcourts.com

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

 OR-seti.e. “Observed Removed_ amaaahyins!

del(a) Mark only -an as
deleted.
.{'aﬂ} ’
{—an}
v{ax’an} "{ax,—an}
- - ® 7 @ M

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

e OR-seti.e. “Observed Removed”...add wins!

del(a)
>
.{‘aﬂ} ®
{-an}
~{an,an} “ap,-an)
TN
3
S VA

zcourts.com

http://zcourts.com

| lled, two slides.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

. OR set I.e. “Observed Removed”...add wins!

add(a del(a
- >
aﬂ A
7T
a}\ arr
add t-an}
\a
.
~{anan} ~ax,-an}
/v""’\,
pAD, L
" QSQW |
K/
& - B 7 @ Y

zcourts.com

http://zcourts.com

| lled, two slides.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

. OR set I.e. “Observed Removed”...add wins!

add(a del(a

aﬂ A
n

add (-an}

~{anan} ~ax,-an}

zcourts., COm

http://zcourts.com

| lled, two sliges.. .

» Several types of CRDTs are available.
* They provide us with “Strong Eventua iy i ey o

l.e. given states propagate we're progeiiciElecRegiylelezlk=lle
{0 converge remote sets resulting in ax

. y ’ being in the set
e OR-seti.e. “Observed Removed”...a 2
add(a) del(a)

{ax,—an}T

@ - =Y 7 @ VA%

zcourts.com

http://zcourts.com

| lled, two sliges.. .

» Several types of CRDTs are available.
* They provide us with “Strong Eventua iy i ey o

l.e. given states propagate we're progeiiciElecRegiylelezlk=lle
{0 converge remote sets resulting in ax

. y ’ being in the set
e OR-seti.e. “Observed Removed”...a 2
add(a) del(a)

: an} .{'aﬂ} & - ’
{-an} {an,-an}
{an)
{an} B
\/{3-7\} {a)\,an} \/{ 2, aﬂ}‘ ’ {a)\}

http://zcourts.com

| lled, two sliges.. .

e Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

. OR—set .e. “Observed Removed”...add wins!

add(a del(a)
{an] >
aﬂ A
{-an) {a\,-an}
{an}
a
\}\ {a}\,-an}T
) a
H{an,an} ~Hax,-an} ® @
AT
S
)
& - B 7 @ N

zcourts.com

http://zcourts.com

| lled, two sliges.. .

Several types of CRDTs are available.

* They provide us with “Strong Eventual Consistency”
l.e. given states propagate we're provably guaranteed
to converge.

OR-set i.e. “Observed Removed”...add wins!

add(a) del(a)
{} an A = g
add {-an) e -
'\jk {ax,—an}T
aran) an-an) . ® ()

. Userneverseestags!

* Query time checks are used to enable DAGs (if violation of DAG constraint is detected
then the runtime simply says the violating edge does not exist and triggers clean up)

* Note,the deleted “a” is optionally kept as a tombstone if the runtime is configured to

support “snapshots” /! {zi\\
\ Qi)<>\ -"
!\ .é { /‘
® - B 7 @ -

zcourts.com

http://zcourts.com

Aims of the Tesseract

. Develop a distributed graph partitioning
algorithm

AN
{ ~§z)<'>\
\Qsé /

zcourts.com

http://zcourts.com

CRDTs again...because they're important

* One very important property of a CRDT is:

{a,b,c,d} & {a,b}u{c,d}

* [hose two sets being logically equivalent is a
desirable property

* Enables partitioning (with rendezvous hashing for e.g.)

zcourts.com

http://zcourts.com

1

Naive “cascading vertices”

Naive graph partitioning
Depends on the query model to make up for its Naivety
Jses hashing to place data
Two cascading algorithms formulated from:
V = the vertex to cascade
N = max nodes to cascade across
N = auto-determined value of n, using logistics growth model
d = deg(v) = Degree of V
= (Vdeg(v) € G) I.€. average degree of all vertices in the graph
InVI = Max number of edges per node for a vertex

l.e. cascading point (min number of edges before cascading occurs)

INV| = d / n - user provides n, split evenly across nodes
2. |InV| = max(d,e) / n - user provides n, split evenly based on d or e
if e Is bigger

0 Zcourts.com

http://zcourts.com

‘Cascading vertices” by example

e |Let's use Twitter tfollowers as an example
e Each letter represents a unique follower

11 el
zZcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
e Each letter represents a unigue follower

zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
e Each letter represents a unigue follower

<71\
19 N4

zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
« Each let*~- ~~nresents a unique follower

add(...) performs a
cascade(deg(V))

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
e Each letter represents a unigue follower

<71\
19 N4

zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
e Each letter represents a unigue follower

add(...) x f
(e .
{a,b...n/threshold}
)
)
® ® R
» AV

zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e \ .
{a,b...n/threshold}
)

{r,s...n/2*threshold}

U

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

cascade(deg(v)) >=
threshold

add(...) x f \/\/
|

{I g \ >
{a,b...n/threshold}
)

{r,s...n/2*threshold}

U

11 A
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e \ .
{a,b...n/threshold}
)

{r,s...n/2*threshold}

U

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e g
{a,b...n/threshold}

add(...) x f
)

{r,s...n/2*threshold}

U

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e g
{a,b...n/threshold}

add(...) x f
)

- e
{r,s...n/2*threshold}

U

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e >
{a,b...n/threshold}

add(...) x f
{} {r,s...n/2*threshold} S \
{)

{w,x...n/3*threshold}

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e g
{a,b...n/threshold}
\ add(...) x f
{1 - @ \
{r,s...n/2*threshold}
add(...) x f
) .

{w,x...n/3*threshold}

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e g
{a,b...n/threshold}
\ add(...) x f
{1 - @ \
{r,s...n/2*threshold}
add(...) x f
) .

{w,x...n/3*threshold}

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

wrap and repeat

add(..) x f

(e "
{a,b...n/threshold}
\ add(...) x f
{1 - @ \
{r,s...n/2*threshold}
add(...) x f
) .

{w,x...n/3*threshold}

@ & Q%Q/

11
zcourts.com

http://zcourts.com

‘Cascading vertices” by example

* |et's use Twitter followers as an example
 Each letter represents a unique follower

add(..) x f

(e g
{a,b...n/threshold}
\ add(...) x f
{1 - @ \
{r,s...n/2*threshold}
add(...) x f
) .

{w,x...n/3*threshold}

@ & Q%Q/

11
zcourts.com

http://zcourts.com

3.

Aims of the Tesseract

support both real tinr

Develop a computati

ona

e al

processing on a dist

model able to
d batch

'louted graph

12

zcourts.com

http://zcourts.com

Distributed computation
L ocalised calculations

Amortisation

Memoization

13

http://zcourts.com

Amortisation

e Optimise to perform more “cheap” computations
e This allows us to occasionally pay the cost of more “expensive”
operations such that they computationally balance out

* e.9. Checking data locally on a node vs querying over a
network

zcourts.com

http://zcourts.com

Amortisation

e Optimise to perform more “cheap” computations
e This allows us to occasionally pay the cost of more “expensive”
operations such that they computationally balance out

* e.9. Checking data locally on a node vs querying over a
network

14

zcourts.com

http://zcourts.com

Viemoization

» Cache the results of computations
e A luxury afforded by immutability
e Sacrifices disk space and memory
* Provides improved query performance

15 zcourts.com

http://zcourts.com

Viemoization

 Cache the results of computations
e A luxury afforded by immutability
e Sacrifices disk space and memory
* Provides improved query performance

1st Traverse Cache
query N Secs results

zcourts.com

http://zcourts.com

Viemoization

 Cache the results of computations
e A luxury afforded by immutability
e Sacrifices disk space and memory
* Provides improved query performance

1st Traverse Cache
query N Secs results
2igle Cache
query n/r

15 NA
zcourts.com

http://zcourts.com

Wormnhole traversals

Immutability offers guarantees

Place markers at every n vertex intervals

When traversing, don't visit every vertex, jJump to markers
iInstead.

Markers at A, G, F, D

By pass B,C,E during traversal, almost halving the time.
The resulting data has any skipped vertex asynchronously
fetched

A key part of this is in the use of‘ follows @ follows _,,
‘Path summaries”

Path summary is an optimisation
that enables the runtime to skip
network requests

follows

knows .
friends
Vo AN

Allows traversal to continue ‘

locally and async request is |

made to gather the remote X%
STAK

N ¥
results 16 zcourts.com

knows

./L

http://zcourts.com

Going functional

http://zcourts.com

Going functional

e Early implementation was in Haskell

i zcourts.com

http://zcourts.com

Going functional

e Early implementation was in Haskell
 \Why? Because it did everything | wanted.

i zcourts.com

http://zcourts.com

Going functional

e Early implementation was in Haskell
 \Why? Because it did everything | wanted.
e |ater realised it's not Haskell in particular | wanted
e ...butits semantics
e |mmutabillity
e Purity
* and some other stuff
* and, well...functions!

i zcourts.com

http://zcourts.com

Going functional

Early implementation was in Haskell
Why? Because it did everything | wanted.
Later realised it's not Haskell in particular | wanted
e ...butits semantics
e |Immutability
e Purity
e and some other stuff
e and, well...functions!
The whole graph thing is an optimisation problem
* [he properties of a purely functional language
enables a run time to make a lot of assumptions
 [hese assumptions open possibilities not otherwise
available (some times by allowing us to pretend a
problem isn't there)

17 zcourts.com

http://zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

» Haskell?”
e ...before you start sneaking out the back doors
* \What would that even look like...?

8 Zcourts.com

http://zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

e Haskell?

e ...before you start sneaking out the back doors
* What would that even look like...?

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G v1 v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"-> v2) E(vl "older"-> v3) E(v2 "older"-> v3)
E(vl <-"respects" v3) E(vl "knows"-> $3)

SELECT V[name, age] E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")
AN
D RN
e
< VA
18 NS

zcourts.com

http://zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

e Haskell?

e ...before you start sneaking out the back doors
* What would that even look like...?

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"-> v2) E(vl "older"-> v3) E(v2 "older"-> v3)
E(vl <-"respects" v3) E(vl "knows"-> $3)

SELECT VIname, age] E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")

» What you're looking at is TQL

/ 1] ‘\
.‘ Qsi?/\’) |
Vais:S,

1 S —
2 zcourts.com

http://zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

e Haskell?

e ...before you start sneaking out the back doors
* What would that even look like...?

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(v1l "sibling" v3) E(v2 "sibling" v3)
E(vl "older"-> v2) E(vl "older"-> v3) E(v2 "older"-> v3)
E(vl <-"respects" v3) E(vl "knows"-> $3)

SELECT V[name, age] E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")
» What you're looking at is TQL
* apure
A
\§§§?)
18 N

zcourts.com

http://zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

e Haskell?

e ...before you start sneaking out the back doors
* What would that even look like...?

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(v1l "sibling" v3) E(v2 "sibling" v3)
E(vl "older"-—> v2) E(vl "older"-> v3) E(v2 "older"-> v3)
E(vl <-"respects" v3) E(vl "knows"-> $3)

SELECT V[name, age] E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")
» What you're looking at is TQL
°* apure

* functional language

A0
{ ~§2,)<'>\
\Qsé r/

1 =
2 zcourts.com

http://zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

e Haskell?

e ...before you start sneaking out the back doors
* What would that even look like...?

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(v1l "sibling" v3) E(v2 "sibling" v3)
E(vl "older"-> v2) E(vl "older"-> v3) E(v2 "older"-> v3)
E(vl <-"respects" v3) E(vl "knows"-> $3)

SELECT VIname, age] E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")
» What you're looking at is TQL
* apure

* functional language
e |t has type inferencing and all the cool functional widgets!

//‘Q
Vaiae %

Ng
e zcourts.co m

http://zcourts.com

Distributed Query Model: TQL pt2

19

http://zcourts.com

Distributed Query Model: TQL pt2

e How was that functional?

18 zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt2

e How was that functional?
It employed use of:

FUNCtIONS - relation between a set of input and a set of permissible outputs

Monads - structures that allow you to define computation in terms of the steps
necessary to obtain the results of the computation.

Monoids - asetwith a single associative (1+ 2) + 3 == 1 + (2+3) binary operation an

identity element (an element where, when applied to any other in the set, the value of the
other element remains unchanged. e.g. given * as the binary operation and the set S={1,2,3},
1 is the identity elementsince 1*1=1,2"1=2and3* 1 =3)

Cu [TYINQ - where a function which takes multiple arguments is converted into a

series of functions which take a single argument, the currying technique produces partially
applied functions.

Higher el bRCCRS =Rl cionahichiokesoiherilnoionsiasiis

parameter

Function com pOSi’[iOﬂ - the process of making the result of one function the

argument of another

19

£

V. :

DA
0. 0.9,
b ‘Y:

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt2

e How was that functional?
* |t employed use of:

e FUNCLIONS - relation between a set of input and a set of permissible outputs

e Monads - structures that allow you to define computation in terms of the steps

necessary to obtain the results of the computation.

e Monolids - asetwitha single associative (1+ 2) + 3 == 1 + (2+3) binary operation an

identity element (an element where, when applied to any other in the set, the value of the
other element remains unchanged. e.g. given * as the binary operation and the set S={1,2,3},
1 is the identity elementsince 1*1=1,2"1=2and3* 1 =3)

Cu [TYINQ - where a function which takes multiple arguments is converted into a

series of functions which take a single argument, the currying technique produces partially
applied functions.

o ngher el bRCCRS =Rl cionahichiokesoiherilnoionsiasiis

parameter

e Function CompOSi’[iOﬂ - the process of making the result of one function the

argument of another

e Don’t believe me? Let’s look at a definition for
“INSERT” shown on the previous slide

ave,
-""?‘(>':'.v'.
b ‘Y:

19 zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

20

http://zcourts.com

Distributed Query Model: TQL pt3

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

0 Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

Function
name

20 Dol
Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

INSERT :: tring -> (V...) -> (E...) -> PartialTransform) -> Transform

Function
name

namespace

20 K

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

INSERT :: () -> (E...) -> PartialTransform) -> Transform

Vertex type
Function

name

namespace

-, :
. i

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

Vertex type
Function

name

Graph
namespace

o i

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

... = var-arg
+ Homogeneous

INSERT :: () -> (E...) -> PartialTransform) -> Transform

Vertex type
Function

name

Graph
namespace

B

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

... = var-arg
+ Homogeneous

Result of “INSERT”

INSERT :: () -> (E...) -> PartialTransform) -> Transform

Vertex type
Function

name

Graph
namespace

20 \%%

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

... = var-arg
+ Homogeneous

Result of “INSERT”

INSERT :: () -> (E...) -> PartialTransform) -> Transform

Result of lambda
function

Vertex type

Function
name

Graph
namespace

20 %%

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

... = var-arg
+ Homogeneous

Result of “INSERT”

INSERT :: () -> (E...) -> PartialTransform) -> Transform

Result of lambda
function

Vertex type

Function

ek « Lambda function you say?

Graph
namespace

20 \%%

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

... = var-arg
+ Homogeneous

Result of “INSERT”

INSERT :: () -> (E...) -> PartialTransform) -> Transform

Result of lambda
function

Vertex type

Function

Lo « Lambda function you say?

Graph e Where, where”?
namespace

20 %%

Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

e |ambda function you say?
e Where, where?

2 h . /
0 Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"— v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows™"™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

e |ambda function you say?
e Where, where?

AN

/'§Q§\

\Qsé /
WV

2 -
0 zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"—> v3)
E(vl <-"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows™"™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

R\,
[1 :] ‘1
.‘ Q?ZZO |
R V4
20 \ o
Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"—> v2) E(vl "older"—> v3) E(v2 "older"—> v3)
E(vl <-"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows'"™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"—> v2) E(vl "older"-> v3) E(v2 "older"—> v3)
E(vl <-"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age] E FROM G WHERE E EXISTS AND (E("knows'™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform
\

&

20 %574

zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"—> v3)
E(vl <-"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows™"™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

R\,
[1 :] ‘1
.‘ Q?ZZO |
R V4
20 \ o
Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"— v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows™"™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley-Milner style type system

/TN \\

/154

S VA
WY,

2 y
0 zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion'", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"—> v3) E(v2 "older"—> v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VI[name, age]l] E FROM G WHERE E EXISTS AND (E("knows'™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley—Milner style type system
 Functions are translated to “enriched” lambda calculus for reduction & evaluation

/RN
/ '.{Z'\\'
: <>‘t).</- .
< b /

20 Dl
zZcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion'", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"— v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows'™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley—Milner style type system
 Functions are translated to “enriched” lambda calculus for reduction & evaluation
e Built on top of LLVM

Vo AN
<>§)>?(~>' J
AS O anys

\.\ 1/

2
0 zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion'", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"—> v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows'™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley-Milner style type system

e Functions are translated to “enriched” lambda calculus for reduction & evaluation
e Built on top of LLVM

* TQL comes with a useful “standard” library like most languages

20 NS
ZCcourts.co

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"— v3) E(v2 "older"—> v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley—Milner style type system

e Functions are translated to “enriched” lambda calculus for reduction & evaluation
e Built on top of LLVM

 TQL comes with a useful “standard” library like most languages

An “Algorithms & machine learning” module will ship as an add-on module

/ 2N

{ f{(Vs

A X,

’> v

20 zcourts Cé

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"—> v3) E(v2 "older"—> v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows") OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley—Milner style type system

* Functions are translated to “enriched” lambda calculus for reduction & evaluation
e Built on top of LLVM

 TQL comes with a useful “standard” library like most languages

* An “Algorithms & machine learning” module will ship as an add-on module

* Ability to define new modules/add or override functions

SN
e s
' fQ%'

_?(‘Zg

>

¢ /
N V

20 D
Zcourts.com

http://zcourts.com

Distributed Query Model: TQL pt3

vl = V("Courtney")
v2 = V("Damion", age = 20)
v3 = V("Carlos")

INSERT INTO G vl v2 V("Mark") E(vl "sibling" v2) E(vl "sibling" v3) E(v2 "sibling" v3)
E(vl "older"— v2) E(vl "older"—> v3) E(v2 "older"—> v3)
E(vl <—"respects" v3) E(vl "knows"—> $3)

SELECT VIname, age]l] E FROM G WHERE E EXISTS AND (E("knows'™) OR E.relationship == "sibling")

INSERT :: (String -> (V...) -> (E...) -> PartialTransform) -> Transform

* Types are optional and are inferred using Hindley—Milner style type system

e Functions are translated to “enriched” lambda calculus for reduction & evaluation
e Built on top of LLVM

 TQL comes with a useful “standard” library like most languages

* An “Algorithms & machine learning” module will ship as an add-on module

* Ability to define new modules/add or override functions

* |Include additional modules (yours or a third party’s)

20 b

Zcourts.com

http://zcourts.com

Distributed

Query Model: Runtime

The model places a lot of additional work server side.

Previously enume

rated properties enable the server to

make a lot of assumptions and by proxy optimisations

Client interface re

malns consistent

While on going research can improve the run time
without major client changes

el zcourts.com

http://zcourts.com

Distributed Query Model: Runtime

The model places a lot of additional work server side.

Previously enume

rated properties enable

make a lot of assumptions and by proxy o

Client interface re

While on going resea

malns consistent

without major client changes

Tesseract runtime

the server to

otimisations

'ch can improve the run time

21

&

zcourts.com

http://zcourts.com

Distributed Query Model: Runtime

The model places a lot of additional work server side.

Previously enume

rated properties enable

make a lot of assumptions and by proxy o

Client interface re

While on going resea

malns consistent

without major client changes

Tesseract runtime

the server to

otimisations

'ch can improve the run time

http://zcourts.com

Distributed Query Model: Runtime

The model places a lot of additional work server side.

Previously enume

rated properties enable

make a lot of assumptions and by proxy o

Client interface re

While on going resea

malns consistent

without major client changes

Tesseract runtime

the server to

otimisations

'ch can improve the run time

http://zcourts.com

Distributed Query Model: Runtime

The model places a lot of additional work server side.

Previously enume

rated properties enable

make a lot of assumptions and by proxy o

Client interface re

While on going resea

malns consistent

without major client changes

Tesseract runtime

the server to

otimisations

'ch can improve the run time

Cascading
vertices

http://zcourts.com

Distributed Query Model: Runtime

 The model places a lot of additional work server side.

* Previously enumerated properties enable the server to
make a lot of assumptions and by proxy optimisations

* Client interface remains consistent

* While on going research can improve the run time
without major client changes

Cascading
vertices

Tesseract runtime

Wormhole traversals

http://zcourts.com

Distributed Query Model: Runtime

The model places a lot of additional work server side.

Previously enume

rated properties enable

make a lot of assumptions and by proxy o

Client interface re

While on going resea

malns consistent

without major client changes

Wormhole traversals

Tesseract runtime

Optimisations
Amortisation/etc)

the server to

otimisations

'ch can improve the run time

Cascading
vertices

(Memoization/

http://zcourts.com

Compaction & Garbage collection

02 Nl
zZcourts.com

http://zcourts.com

Compaction & Garbage collection

* Immutability means we store data that's no longer needed i.e. garbage

= zcourts.com

http://zcourts.com

Compaction & Garbage collection

* Immutability means we store data that's no longer needed i.e. garbage
« CRDTs can accumulate a large amount of garbage
* [his can be avoided by not keeping tombstones at all
e Without tombstones the system is unable to do a consistent
snapshot
* |f snapshots are disabled, tombstones are not needed
e Short synchronisation are used out of the query path to do some
clean up (currently evaluating RAFT for GC consensus)

= zcourts.com

http://zcourts.com

Compaction & Garbage collection

* Immutability means we store data that's no longer needed i.e. garbage
« CRDTs can accumulate a large amount of garbage
* [his can be avoided by not keeping tombstones at all
e Without tombstones the system is unable to do a consistent
snapshot
* |f snapshots are disabled, tombstones are not needed
e Short synchronisation are used out of the query path to do some
clean up (currently evaluating RAFT for GC consensus)
e Current work is modelled off of JVM’s generational collectors

= zcourts.com

http://zcourts.com

Compaction & Garbage collection

Immutability means we store data that's no longer needed I.e. garbage

CRDTs can accumulate a large amount of garbage

* [his can be avoided by not keeping tombstones at all

e Without tombstones the system is unable to do a consistent
snapshot

* |f snapshots are disabled, tombstones are not needed

e Short synchronisation are used out of the query path to do some

clean up (currently evaluating RAFT for GC consensus)
Current work is modelled off of JVM’s generational collectors
Algorithm needs more investigation...

22

zcourts.com

http://zcourts.com

Compaction & Garbage collection

Immutability means we store data that's no longer needed I.e. garbage

CRDTs can accumulate a large amount of garbage
* [his can be avoided by not keeping tombstones at all
e Without tombstones the system is unable to do a consistent

snapshot

* |f snapshots are disabled, tombstones are not needed

e Short synchronisation are used out of the query path to do some

clean up (currently evaluating RAFT for GC consensus)
Current work is modelled off of JVM’s generational collectors
Algorithm needs more investigation...

Compaction also serves as an opportunity to optimise data location
* Write only means vertex properties and edges aren't always next to

each other in a data file

* During compaction we re-arrange contents

* Helps reduce the amount of work required by spindle disks to fetch

a vertex’'s data

22

/o ~
[R
: WKa-A

zcourts.com

http://zcourts.com

First release due In 2-3 months
Will be Apache v2 Licensed

github.com/zcourts/Tesseract

ave,
',/‘.:_().:_."-
b ‘Y:

23 zcourts.com

http://zcourts.com
http://github.com/zcourts/Tesseract

Enda...

Questions?

Courtney Robinson
Google “zcourts”
courtney@zcourts.com

github.com/zcourts/Tesseract

24

9. 9.9,
- ..Y'

zcourts.com

http://zcourts.com
mailto:courtney@zcourts.com
http://github.com/zcourts/Tesseract

