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Starting point - Genode

— Application-specific TCB




W  Starting point - Nitpicker
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Starting point

Starting point
= Low-complexity GUI server (nitpicker)
» Toolkits

> Qt5
» DOpE
» Custom widget set

= Hard-wired policy

Goal — Desktop environment

» Retain low TCB complexity
» Accommodate a great variety of use cases
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& Report session interface

Existing mechanisms for propagating information

» Configuration defined at startup

» Policy defined at session-creation time
» Session interfaces

» Dynamic configuration changes

What is needed in addition?

= Components need to publish internal state, e. g.,
» Driver: Report available device resources
» Component: Report feature set
» Applications: User notifications
» Propagating error conditions




Report session interface (2
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Publisher-subscriber mechanism

Combining “Report” and “ROM?” session interfaces

» The report_rom server provides
> “Report” service
» “ROM" service
= Stores reports using report-session labels as keys
» Controls access using ROM-session labels as selectors
= Triggers ROM-changed signals on incoming reports

— Generic publisher-subscriber mechansism

» Composeable with existing ROM-using components
= Can be instantiated many times
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Flexibility of Nitpicker

Nitpicker’s built-in policy stands in the way

New configuration concept

= Domains
» Layering

— Separation of policy from the nitpicker server

= Pointer
» Status bar




Nitpicker with built-in policies
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Policy as external components
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W=  Transitions

How to smoothly toggle the visibility of the windows?

» Adding fading feature to the application?
— Increase application complexity
— Modifications needed per application

» Adding fading feature to nitpicker?
— Increase complexity of nitpicker

Solution
— Move fading feature to separate component










Launcher

Starting point

» Demo menu (monolithic application)
» Based on pre-rendered PNG images
= Customization is labour intensive

Customizable launcher

= Runtime-generated widgets
— complex (e. g., relies on libc, libpng, zlib)




Launcher (2)

How to keep the complexity of the launcher low?

» Launcher is parent of all started subsystems
— belongs to the trusted computing base
= Appealing presentation comes with complexity

Solution

1. Turn launcher into a multi-component application
2. Sandboxed widget-rendering component
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\\\//‘ Window management

Starting point

= Genode lacked a coherent window manager
» Application-specific window management

Problem

= Diversity of tastes and expectations by users
» There is no a single solution for everyone
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\\\)/, Window management (3)

De-componentized window manager

Provides “Nitpicker” interface (compatibility)
Layouter (defines behavior)

Decorator (defines look)

Layouter and decorator are sandboxed
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\\\//‘. TCB complexity of window management

TCB footprint of the window manager

» No libc dependency
» Adds less than 3,500 SLOC

Further TCB reduction

» Multiple window-manager instances
» Each instance assigned to a different nitpicker domain




Screen resolutions

How to support different screen resolutions?

= The screen resolution used to be hard-wired at build time

» VESA driver configuration
» Background image of the matching size

Solution

1. Detection heuristics in the VESA driver
2. Resolution-independent backdrop
3. Dynamic framebuffer mode updates
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Next steps

» Alternative window layouters and decorators

» Capability-based desktop environment

» Using Genode for day-to-day computing




Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode
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