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Starting point - Genode

→ Application-specific TCB
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Starting point - Nitpicker
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Starting point - Nitpicker
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Starting point

Starting point

Low-complexity GUI server (nitpicker)
Toolkits

I Qt5
I DOpE
I Custom widget set

Hard-wired policy

Goal → Desktop environment

Retain low TCB complexity
Accommodate a great variety of use cases
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ROM session interface
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ROM session interface (2)
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Transactional update of a ROM session
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ROM session interface (3)
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ROM session interface (4)

Demo
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Report session interface

Existing mechanisms for propagating information

Configuration defined at startup
Policy defined at session-creation time
Session interfaces
Dynamic configuration changes

What is needed in addition?

Components need to publish internal state, e. g.,
I Driver: Report available device resources
I Component: Report feature set
I Applications: User notifications
I Propagating error conditions
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Report session interface (2)
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Publisher-subscriber mechanism

Combining “Report” and “ROM” session interfaces

The report rom server provides
I “Report” service
I “ROM” service

Stores reports using report-session labels as keys
Controls access using ROM-session labels as selectors
Triggers ROM-changed signals on incoming reports

→ Generic publisher-subscriber mechansism

Composeable with existing ROM-using components
Can be instantiated many times
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Flexibility of Nitpicker

Nitpicker’s built-in policy stands in the way

New configuration concept

Domains
Layering

→ Separation of policy from the nitpicker server

Pointer
Status bar
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Nitpicker with built-in policies
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Policy as external components
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Domains example

Demo
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Transitions

How to smoothly toggle the visibility of the windows?

Adding fading feature to the application?
→ Increase application complexity
→ Modifications needed per application

Adding fading feature to nitpicker?
→ Increase complexity of nitpicker

Solution
→ Move fading feature to separate component
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Transitions (2)

Init

Scout Nitpicker Fader Scout
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Transitions (2)

Demo

Introducing a radically componentized GUI architecture 23



Launcher

Starting point

Demo menu (monolithic application)
Based on pre-rendered PNG images
Customization is labour intensive

Customizable launcher

Runtime-generated widgets
→ complex (e. g., relies on libc, libpng, zlib)
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Launcher (2)

How to keep the complexity of the launcher low?

Launcher is parent of all started subsystems
→ belongs to the trusted computing base
Appealing presentation comes with complexity

Solution

1. Turn launcher into a multi-component application
2. Sandboxed widget-rendering component
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Launcher (3)
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Launcher (4)

Demo
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Window management

Starting point

Genode lacked a coherent window manager
Application-specific window management

Problem

Diversity of tastes and expectations by users
There is no a single solution for everyone
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Window management (2)
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Window management (3)

De-componentized window manager

Provides “Nitpicker” interface (compatibility)
Layouter (defines behavior)
Decorator (defines look)
Layouter and decorator are sandboxed
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Window management (4)

Init

Window manager
Nitpicker App

Report ROM

ROMReport
Decorator Layouter

Nitpicker

Nitpicker

ROM
<window -list >

...

</window -list >

ROM
<hover >

...

</hover >

Report
<window -layout >

...

</window -layout >

ROM
<window -layout >

...

</window -layout >

Report
<hover >

...

</hover >

in
p
u
t

Introducing a radically componentized GUI architecture 31



Decorator

Demo
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TCB complexity of window management

TCB footprint of the window manager

No libc dependency
Adds less than 3,500 SLOC

Further TCB reduction

Multiple window-manager instances
Each instance assigned to a different nitpicker domain
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Screen resolutions

How to support different screen resolutions?

The screen resolution used to be hard-wired at build time
I VESA driver configuration
I Background image of the matching size

Solution

1. Detection heuristics in the VESA driver
2. Resolution-independent backdrop
3. Dynamic framebuffer mode updates
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Screen resolutions

Demo
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Next steps

Alternative window layouters and decorators

Capability-based desktop environment

Using Genode for day-to-day computing
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Thank you

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode
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