Introducing a radically componentized
GUI architecture

&

Norman Feske
<norman.feskeOgenode-labs.com>

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Starting point - Genode

— Application-specific TCB

W Starting point - Nitpicker

Launcher

—
testnit
scout

launchpad
nitiog
liquid b 7165 Kb el By e
nitpicker £]
Children
—

NITPICKER

User Input

Starting point

Starting point
= Low-complexity GUI server (nitpicker)
» Toolkits

> Qt5
» DOpE
» Custom widget set

= Hard-wired policy

Goal — Desktop environment

» Retain low TCB complexity
» Accommodate a great variety of use cases

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

ROM client

I

session

ROM server

module

ROM session interface (2

)

ROM client

session

v
Ay =
2y >

Transactional update of a ROM session

1
1
'
\‘ H m m,
N 7 N 7 \ ’
~o_~- ~Seo- N

config file “file
ROM system system

& Report session interface

Existing mechanisms for propagating information

» Configuration defined at startup

» Policy defined at session-creation time
» Session interfaces

» Dynamic configuration changes

What is needed in addition?

= Components need to publish internal state, e. g.,
» Driver: Report available device resources
» Component: Report feature set
» Applications: User notifications
» Propagating error conditions

Report session interface (2

session

V-
V. ‘A
RaL L R

Report server ram

Publisher-subscriber mechanism

Combining “Report” and “ROM?” session interfaces

» The report_rom server provides
> “Report” service
» “ROM" service
= Stores reports using report-session labels as keys
» Controls access using ROM-session labels as selectors
= Triggers ROM-changed signals on incoming reports

— Generic publisher-subscriber mechansism

» Composeable with existing ROM-using components
= Can be instantiated many times

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Flexibility of Nitpicker

Nitpicker’s built-in policy stands in the way

New configuration concept

= Domains
» Layering

— Separation of policy from the nitpicker server

= Pointer
» Status bar

Nitpicker with built-in policies

1
II
’

Policy as external components

Launchpa

1

7 [Browser
4

W= Transitions

How to smoothly toggle the visibility of the windows?

» Adding fading feature to the application?
— Increase application complexity
— Modifications needed per application

» Adding fading feature to nitpicker?
— Increase complexity of nitpicker

Solution
— Move fading feature to separate component

Launcher

Starting point

» Demo menu (monolithic application)
» Based on pre-rendered PNG images
= Customization is labour intensive

Customizable launcher

= Runtime-generated widgets
— complex (e. g., relies on libc, libpng, zlib)

Launcher (2)

How to keep the complexity of the launcher low?

» Launcher is parent of all started subsystems
— belongs to the trusted computing base
= Appealing presentation comes with complexity

Solution

1. Turn launcher into a multi-component application
2. Sandboxed widget-rendering component

Report

<hover>

ROM

<dialog> </hover>

</dialog>

\\\//‘ Window management

Starting point

= Genode lacked a coherent window manager
» Application-specific window management

Problem

= Diversity of tastes and expectations by users
» There is no a single solution for everyone

ement (2

Launchpaii

- 1
Pointe s
A

\\\)/, Window management (3)

De-componentized window manager

Provides “Nitpicker” interface (compatibility)
Layouter (defines behavior)

Decorator (defines look)

Layouter and decorator are sandboxed

Report

<hover>

</hover >

<window-layout>

</window-layout>

<window-1layout>

</window-layout>

»
3
[3
A

ROM

<hover>

</hover>

ROM

<window-1list>

</window-1list>

'
A
as* ol

P

v
v
-

\\\//‘. TCB complexity of window management

TCB footprint of the window manager

» No libc dependency
» Adds less than 3,500 SLOC

Further TCB reduction

» Multiple window-manager instances
» Each instance assigned to a different nitpicker domain

Screen resolutions

How to support different screen resolutions?

= The screen resolution used to be hard-wired at build time

» VESA driver configuration
» Background image of the matching size

Solution

1. Detection heuristics in the VESA driver
2. Resolution-independent backdrop
3. Dynamic framebuffer mode updates

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Next steps

» Alternative window layouters and decorators

» Capability-based desktop environment

» Using Genode for day-to-day computing

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

	Starting point
	Ingredients
	Challenges and solutions
	Next steps

