
Introducing a radically componentized
GUI architecture

Norman Feske
<norman.feske@genode-labs.com>



Outline

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Introducing a radically componentized GUI architecture 2



Outline

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Introducing a radically componentized GUI architecture 3



Starting point - Genode

→ Application-specific TCB

Introducing a radically componentized GUI architecture 4



Starting point - Nitpicker

Introducing a radically componentized GUI architecture 5



Starting point - Nitpicker

Introducing a radically componentized GUI architecture 6



Starting point

Starting point

Low-complexity GUI server (nitpicker)
Toolkits

I Qt5
I DOpE
I Custom widget set

Hard-wired policy

Goal → Desktop environment

Retain low TCB complexity
Accommodate a great variety of use cases

Introducing a radically componentized GUI architecture 7



Outline

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Introducing a radically componentized GUI architecture 8



ROM session interface

ROM server

ROM client

session

ROM

module

Introducing a radically componentized GUI architecture 9



ROM session interface (2)

ROM server

ROM client

session

ROM

module

update

signal

new

version

Transactional update of a ROM session

Introducing a radically componentized GUI architecture 10



ROM session interface (3)

Init

Backdrop FS-ROM RAM FS
Noux

Runtime

Editor

config
ROM

file
system

file
system

Introducing a radically componentized GUI architecture 11



ROM session interface (4)

Demo

Introducing a radically componentized GUI architecture 12



Report session interface

Existing mechanisms for propagating information

Configuration defined at startup
Policy defined at session-creation time
Session interfaces
Dynamic configuration changes

What is needed in addition?

Components need to publish internal state, e. g.,
I Driver: Report available device resources
I Component: Report feature set
I Applications: User notifications
I Propagating error conditions

Introducing a radically componentized GUI architecture 13



Report session interface (2)

Report server

Report client

session

RAM

�

report

Introducing a radically componentized GUI architecture 14



Publisher-subscriber mechanism

Combining “Report” and “ROM” session interfaces

The report rom server provides
I “Report” service
I “ROM” service

Stores reports using report-session labels as keys
Controls access using ROM-session labels as selectors
Triggers ROM-changed signals on incoming reports

→ Generic publisher-subscriber mechansism

Composeable with existing ROM-using components
Can be instantiated many times

Introducing a radically componentized GUI architecture 15



Outline

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Introducing a radically componentized GUI architecture 16



Flexibility of Nitpicker

Nitpicker’s built-in policy stands in the way

New configuration concept

Domains
Layering

→ Separation of policy from the nitpicker server

Pointer
Status bar

Introducing a radically componentized GUI architecture 17



Nitpicker with built-in policies

Init

Nitpicker
GUI

Backdrop

Launchpad

Browser

Introducing a radically componentized GUI architecture 18



Policy as external components

Init

Nitpicker
GUI

Panel

Pointer

Backdrop

Launchpad

Browser

Introducing a radically componentized GUI architecture 19



Domains example

Demo

Introducing a radically componentized GUI architecture 20



Transitions

How to smoothly toggle the visibility of the windows?

Adding fading feature to the application?
→ Increase application complexity
→ Modifications needed per application

Adding fading feature to nitpicker?
→ Increase complexity of nitpicker

Solution
→ Move fading feature to separate component

Introducing a radically componentized GUI architecture 21



Transitions (2)

Init

Scout Nitpicker Fader Scout

Introducing a radically componentized GUI architecture 22



Transitions (2)

Demo

Introducing a radically componentized GUI architecture 23



Launcher

Starting point

Demo menu (monolithic application)
Based on pre-rendered PNG images
Customization is labour intensive

Customizable launcher

Runtime-generated widgets
→ complex (e. g., relies on libc, libpng, zlib)

Introducing a radically componentized GUI architecture 24



Launcher (2)

How to keep the complexity of the launcher low?

Launcher is parent of all started subsystems
→ belongs to the trusted computing base
Appealing presentation comes with complexity

Solution

1. Turn launcher into a multi-component application
2. Sandboxed widget-rendering component

Introducing a radically componentized GUI architecture 25



Launcher (3)

Init

NitpickerLauncher

Fader Report ROM

Menu view

Nitpicker

Nitpicker ROMReportROM
<dialog >

...

</dialog >

Report
<hover >

...

</hover >

Introducing a radically componentized GUI architecture 26



Launcher (4)

Demo

Introducing a radically componentized GUI architecture 27



Window management

Starting point

Genode lacked a coherent window manager
Application-specific window management

Problem

Diversity of tastes and expectations by users
There is no a single solution for everyone

Introducing a radically componentized GUI architecture 28



Window management (2)

Init

Nitpicker
GUI

Window
Manager

Panel

Pointer

Backdrop

Launchpad

Browser

Introducing a radically componentized GUI architecture 29



Window management (3)

De-componentized window manager

Provides “Nitpicker” interface (compatibility)
Layouter (defines behavior)
Decorator (defines look)
Layouter and decorator are sandboxed

Introducing a radically componentized GUI architecture 30



Window management (4)

Init

Window manager
Nitpicker App

Report ROM

ROMReport
Decorator Layouter

Nitpicker

Nitpicker

ROM
<window -list >

...

</window -list >

ROM
<hover >

...

</hover >

Report
<window -layout >

...

</window -layout >

ROM
<window -layout >

...

</window -layout >

Report
<hover >

...

</hover >

in
p
u
t

Introducing a radically componentized GUI architecture 31



Decorator

Demo

Introducing a radically componentized GUI architecture 32



TCB complexity of window management

TCB footprint of the window manager

No libc dependency
Adds less than 3,500 SLOC

Further TCB reduction

Multiple window-manager instances
Each instance assigned to a different nitpicker domain

Introducing a radically componentized GUI architecture 33



Screen resolutions

How to support different screen resolutions?

The screen resolution used to be hard-wired at build time
I VESA driver configuration
I Background image of the matching size

Solution

1. Detection heuristics in the VESA driver
2. Resolution-independent backdrop
3. Dynamic framebuffer mode updates

Introducing a radically componentized GUI architecture 34



Screen resolutions

Demo

Introducing a radically componentized GUI architecture 35



Outline

1. Starting point

2. Ingredients

3. Challenges and solutions

4. Next steps

Introducing a radically componentized GUI architecture 36



Next steps

Alternative window layouters and decorators

Capability-based desktop environment

Using Genode for day-to-day computing

Introducing a radically componentized GUI architecture 37



Thank you

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

Introducing a radically componentized GUI architecture 38


	Starting point
	Ingredients
	Challenges and solutions
	Next steps

