Materialized Views for MySQL using Flexviews

FOSDEM 2015
Brussels, Belgium

http://flexvie.ws Justin Swanhart (@jswanhart)

Introduction

e Whoam I?

e \Whatdo |l do?

PPPPP
e ALAh

e \What is this talk about?

What is Swanhart-Tools?

e Github repo containing multiple tools
o Flexviews - Materialized Views for MySQL

o Shard-Query - Sharding and parallel query (MPP)
o utils - small utilities for MySQL

o bcmath UDF - Arbitrary precision math UDFs

What is Flexviews?

A Materialized View toolkit with two parts:
e FlexCDC - pluggable change data capture

e Flexviews SQL API - stored routines for
managing materialized views

aurus

materialize [mo't1ore laiz] vb S

1. (intr) to become fact; actually happen our hopes never materialized

2. toinvest or become invested with a physical shape or form

3. to cause (a spirit, as of a dead person) to appear in material form (intr)
4. to take shape; become tangible after hours of discussion, the project finally began

5. Physics - to form (material particles) from energy, as in pair production

Collins English Dictionary — Complete and Unabridged © HarperCollins Publishers 1991, 1994, 1998,
2000, 2003

What are Materialized Views?

e A materialized view is similar to a regular
view

e Regular views are computed each time they
are accessed

e Materialized views are computed periodically
and the results are stored in a table

A rose by any other name

e DB2 calls them "materialized query tables’

e Microsoft SQL Server calls them “indexed
views”

e Oracle calls them “snapshots” or
“materialized views”, depending on the
version

e \ertica calls them “projections”

MySQL does not have native MVs

e Closest thing is:
CREATE TABLE ... AS SELECT

e There is no way to automatically update the
resulting table when the original data
changes

e Flexviews fills the gap providing 3rd party
MVs

Why use Materialized Views (MV)?

e Speed!
o A MV stores the results in a table, which can be
iIndexed

o Queries can sometimes be reduced from hours
down to seconds or even milliseconds as a result

o Great for dashboards, or cacheing important result
sets

An MV is a cache

e The results of the MV are stored in a table,
which is just a cache

e The cache gets out of data when underlying
data changes

e The view must be refreshed periodically
o This refresh should be as efficient as possible

Two materialized view refresh algos

e COMPLETE refresh
o Supports all SELECT, including OUTER join

o Rebuilds whole table from scratch when the view is

refreshed (expensive)

e INCREMENTAL refresh

O
O

O

Only INNER join supported
Most aggregate functions supported

Uses the row changes collected since the last
refresh to incrementally update the table (much

Flexviews Installation

e Download Swanhart-Tools
e Setup FlexCDC
o Requires PHP 5.3+

o ROW based binary log (not MIXED or

STATEMENT!)
o Full binary log images (5.6)
o READ-COMMITTED tx_isolation (recommended)

e Setup Flexviews with setup.sql

FlexCDC - Change Data Capture

e FlexCDC uses mysqlbinlog to read the
binary log from the server

e mysqlbinlog converts RBR into “pseudo-
SBR” which FlexCDC decodes

e For each insert,update or delete, FlexCDC
writes the change history into a change log

FlexCDC - Why is it needed?

e FlexCDC reads the binary log created by the
database server.
e \Why not triggers?

o Triggers can not capture commit order
Triggers add a lot of overhead

Triggers can't be created by stored routines
MySQL allows only one trigger per table

O
O
O
O

FlexCDC captures changes

CREATE TABLE 't1" (select * from flexviews.mvlogs
o where table name='tl'
cl |nt(11) DEFAULT NULL Kok ok kKK Kk Kk ok kKK Kk ok ok kKK K K K

) ENGINE=InnoDB DEFAULT CHARSET=latin1; table schema: test

table name: tl
. mvlog name:
CALL flexviews.create_mvlog(‘test','t1"); mvlog 7a52a7837df7b90fa91d3c0c3c98504
active flag: 1
insert into test.t1 values (10); 1 row in set (0.00 sec)
select * from mvlog_7a52a7837df7b90fa91d3c0c3c985048;
o o Fom o - +

| dml type | uow id | fv$server id | fvSgsn | cl |

FlexCDC captures changes (cont)

pomm - tomm - pomm - tomm - - +

| dml type | uow id | fv$server id | fvSgsn | cl |

Fom—— Fo— Fom - Fo— e et +
| 1] 7 1| 2 | 10 |
fmmmm fmmm————— fmm e fmmm————— fm————- +
T T T Inserted value
1 = INSERT
-1 = DELETE Server ID of server Global Sequence Number

Transaction ID
aka Unit of Work ID

SQL API Basics

Creating Materialized Views

e Flexviews includes a set of stored routines
called the Flexviews SQL API

e http://greenlion.qgithub.io/swanhart-
tools/flexviews/manual.html

e SQL APl is used to “build” the SQL
statement which is used to create the view

http://greenlion.github.io/swanhart-tools/flexviews/manual.html
http://greenlion.github.io/swanhart-tools/flexviews/manual.html
http://greenlion.github.io/swanhart-tools/flexviews/manual.html

SQL API BASICS - CREATE VIEW

e Every MV has a “materialized view id”
e This ID is created by flexviews.CREATE()
e The ID is used in almost all other API calls

call flexviews.create('test',6 'test mv', 'INCREMENTAL') ;

set @mvid := last insert id();

SQL API BASICS - Add tables

Add tables using flexviews.ADD TABLE()

call flexviews.add table(@mvid, 'test',6 'tl',6 'aliasl',
NULL) ;

Last parameter is the JOIN clause:

call flexviews.add table(@mvid, 'test',6 't2',6 'alias2',’'ON
aliasl.some col = alias2.some col’);

SQL API Basics - Add expressions

SELECT clause and WHERE clause
expressions can be added with flexviews.
ADD EXPR()

call flexviews.add expr (@mvid, 'GROUP',6 'cl',6'cl');

call flexviews.add expr (@mvid, 'COUNT',6'*',6 'cnt');

SQL API BASICS - Build the view

The materialized view doesn’t exist until it is
enabled with flexviews.ENABLE()

to————————- t—————= to——————— +

call flexviews.enable (Gmvid); | mview$Spk | cl | cnt |
t————— +—————— t——— +

select * from test.test _mvj/——> | 1 1 | 1048576 |
| 2 10 | 1048576 |

What happens when data changes?

e The materialized view will become “stale” or
“out of date” with respect to the data in the
table

e Periodically, the MV can be “refreshed”, or
brought up to date with the changes

SQL API - Refreshing the view

Consider the following insertion into the t1
table:

insert into test.tl wvalues (2);

select ¢l, count(*) as cnt from tl
group by cl;

Now MV is out of date: e e :
| cl | cnt |
tom———————— +-————- o + e o +
| mview$pk | cl | cnt | | 2 u 104857i |
| |
Fomm e Fommme Fommm e * | 10 | 1048576 |

1 | 1 | 1048576 | e b n
| 2 | 10 | 1048576 |

SQL API Basics - Refresh procedure

MV are refreshed with flexviews.REFRESH()
There are two steps to refreshing a MV

1. COMPUTE changes into delta tables
2. APPLY delta changes into the view
3. BOTH (do both steps at once)

SQL API Basics - Compute Deltas

call flexviews.refresh (@mvid, 'COMPUTE',NULL) ;

select * from test.test_mv;delta;

SQL API Basics - Apply deltas

call flexviews.refresh (@mvid, "APPLY',NULL) ;

select * from test.test mv;

tom e —— e e +
| mviewSpk | cl | cnt |
tmm +—————— t—m +
1	1	1048576
2	10	1048576
4	2	1
o —— e o +

SQL API Basics - COMPLETE views

You can create views that can’t be refreshed,

but that can use all SQL constructs, including
OUTER join.

CREATE TABLE ... AS and RENAME TABLE
are used by Flexviews to manage the view

SQL API Basics - COMPLETE (cont)

call flexviews.create('demo', 'top customers', 'COMPLETE');
call flexviews.set definition/(
flexviews.get 1d('demo', 'dashboard top customers'),

'select customer 1id,
sum(total price) total price,
sum(total lines) total lines
from demo.dashboard customer sales dcs
group by customer id
order by total price desc');

call flexviews.enable (flexviews.get id
('demo', "top customers'));

FlexCDC Plugins

FlexCDC is pluggable

e A PHP interface is provided for FlexCDC
plugins

e Plugins receive each insert, update and
delete

e take action such as writing the changes to a
message queue

Example FlexCDC plugin*

require_once('plugin_interface.php');
class FlexCDC_Plugin implements FlexCDC_Plugin_Interface {
static function begin_trx($uow_id, $gsn,$instance) {
echo "START TRANSACTION: trx_id: $uow_id, Prev GSN: $gsn\n";
b
static function insert($row, $db, $table, $trx_id, $gsn,$instance) {
echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: INSERT, AT: $gsn\n"; print_r($row);
b
static function delete($row, $db, $table, $trx_id, $gsn,$instance) {
echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: DELETE, AT: $gsn\n"; print_r($row);
b
static function update_before($row, $db, $table, $trx_id, $gsn,$instance) {
echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: UPDATE (OLD), AT: $gsn\n"; print_r($row);
b
static function update_after($row, $db, $table, $trx_id, $gsn,$instance) {
echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: UPDATE (NEW), AT: $gsn\n"; print_r($row);

b

* Not all functions represented

SQL API QUICK REFERENCE

flexviews.create($schema, $table, $method);
flexviews.get_id($schema, $table);

flexviews.add_table($id, $schema, $table, $alias, $join_condition);
flexviews.add_expr($id, $expr_type, $expr, $alias);
flexviews.enable($id);

flexviews.refresh($id, $method, $to_trx_id);

flexviews.get_sql($id);

flexviews.disable($id);

