
Materialized Views for MySQL using Flexviews

FOSDEM 2015
Brussels, Belgium

Justin Swanhart (@jswanhart)http://flexvie.ws

Introduction

● Who am I?

● What do I do?

● What is this talk about?

What is Swanhart-Tools?

● Github repo containing multiple tools
○ Flexviews - Materialized Views for MySQL

○ Shard-Query - Sharding and parallel query (MPP)

○ utils - small utilities for MySQL

○ bcmath UDF - Arbitrary precision math UDFs

What is Flexviews?

A Materialized View toolkit with two parts:
● FlexCDC - pluggable change data capture

● Flexviews SQL API - stored routines for
managing materialized views

materialize [məˈtɪərɪəˌlaɪz] vb
1. (intr) to become fact; actually happen our hopes never materialized

2. to invest or become invested with a physical shape or form

3. to cause (a spirit, as of a dead person) to appear in material form (intr)

4. to take shape; become tangible after hours of discussion, the project finally began

5. Physics - to form (material particles) from energy, as in pair production

Collins English Dictionary – Complete and Unabridged © HarperCollins Publishers 1991, 1994, 1998,
2000, 2003

What are Materialized Views?

● A materialized view is similar to a regular
view

● Regular views are computed each time they
are accessed

● Materialized views are computed periodically
and the results are stored in a table

A rose by any other name

● DB2 calls them “materialized query tables”
● Microsoft SQL Server calls them “indexed

views”
● Oracle calls them “snapshots” or

“materialized views”, depending on the
version

● Vertica calls them “projections”

MySQL does not have native MVs

● Closest thing is:
CREATE TABLE … AS SELECT

● There is no way to automatically update the
resulting table when the original data
changes

● Flexviews fills the gap providing 3rd party
MVs

Why use Materialized Views (MV)?

● Speed!
○ A MV stores the results in a table, which can be

indexed
○ Queries can sometimes be reduced from hours

down to seconds or even milliseconds as a result
○ Great for dashboards, or cacheing important result

sets

An MV is a cache

● The results of the MV are stored in a table,
which is just a cache

● The cache gets out of data when underlying
data changes

● The view must be refreshed periodically
○ This refresh should be as efficient as possible

Two materialized view refresh algos

● COMPLETE refresh
○ Supports all SELECT, including OUTER join
○ Rebuilds whole table from scratch when the view is

refreshed (expensive)
● INCREMENTAL refresh

○ Only INNER join supported
○ Most aggregate functions supported
○ Uses the row changes collected since the last

refresh to incrementally update the table (much
faster)

Flexviews Installation

● Download Swanhart-Tools
● Setup FlexCDC

○ Requires PHP 5.3+
○ ROW based binary log (not MIXED or

STATEMENT!)
○ Full binary log images (5.6)
○ READ-COMMITTED tx_isolation (recommended)

● Setup Flexviews with setup.sql

FlexCDC - Change Data Capture

● FlexCDC uses mysqlbinlog to read the
binary log from the server

● mysqlbinlog converts RBR into “pseudo-
SBR” which FlexCDC decodes

● For each insert,update or delete, FlexCDC
writes the change history into a change log

FlexCDC - Why is it needed?

● FlexCDC reads the binary log created by the
database server.

● Why not triggers?
○ Triggers can not capture commit order
○ Triggers add a lot of overhead
○ Triggers can’t be created by stored routines
○ MySQL allows only one trigger per table
○ ...

FlexCDC captures changes
CREATE TABLE `t1` (
 `c1` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CALL flexviews.create_mvlog('test','t1');

insert into test.t1 values (10);
select * from mvlog_7a52a7837df7b90fa91d3c0c3c985048;
+----------+--------+--------------+--------+------+

| dml_type | uow_id | fv$server_id | fv$gsn | c1 |

+----------+--------+--------------+--------+------+

| 1 | 7 | 1 | 2 | 10 |

+----------+--------+--------------+--------+------+

select * from flexviews.mvlogs
where table_name='t1'

table_schema: test
 table_name: t1
 mvlog_name:
mvlog_7a52a7837df7b90fa91d3c0c3c985048
 active_flag: 1
1 row in set (0.00 sec)

FlexCDC captures changes (cont)
+----------+--------+--------------+--------+------+

| dml_type | uow_id | fv$server_id | fv$gsn | c1 |

+----------+--------+--------------+--------+------+

| 1 | 7 | 1 | 2 | 10 |

+----------+--------+--------------+--------+------+

Inserted value

Server ID of server Global Sequence Number

Transaction ID
aka Unit of Work ID

 1 = INSERT
-1 = DELETE

SQL API Basics

Creating Materialized Views

● Flexviews includes a set of stored routines
called the Flexviews SQL API

● http://greenlion.github.io/swanhart-
tools/flexviews/manual.html

● SQL API is used to “build” the SQL
statement which is used to create the view

http://greenlion.github.io/swanhart-tools/flexviews/manual.html
http://greenlion.github.io/swanhart-tools/flexviews/manual.html
http://greenlion.github.io/swanhart-tools/flexviews/manual.html

SQL API BASICS - CREATE VIEW

● Every MV has a “materialized view id”
● This ID is created by flexviews.CREATE()
● The ID is used in almost all other API calls

call flexviews.create('test','test_mv','INCREMENTAL');

set @mvid := last_insert_id();

SQL API BASICS - Add tables

Add tables using flexviews.ADD_TABLE()

call flexviews.add_table(@mvid, 'test','t1','alias1',
NULL);

Last parameter is the JOIN clause:

call flexviews.add_table(@mvid, 'test','t2','alias2',’ON
alias1.some_col = alias2.some_col’);

SQL API Basics - Add expressions

SELECT clause and WHERE clause
expressions can be added with flexviews.
ADD_EXPR()

call flexviews.add_expr(@mvid,'GROUP','c1','c1');

call flexviews.add_expr(@mvid,'COUNT','*','cnt');

SQL API BASICS - Build the view

The materialized view doesn’t exist until it is
enabled with flexviews.ENABLE()

call flexviews.enable(@mvid);

select * from test.test_mv;

+----------+------+---------+

| mview$pk | c1 | cnt |

+----------+------+---------+

| 1 | 1 | 1048576 |

| 2 | 10 | 1048576 |

+----------+------+---------+

What happens when data changes?

● The materialized view will become “stale” or
“out of date” with respect to the data in the
table

● Periodically, the MV can be “refreshed”, or
brought up to date with the changes

SQL API - Refreshing the view

Consider the following insertion into the t1
table:
insert into test.t1 values (2);

Now MV is out of date:
+----------+------+---------+

| mview$pk | c1 | cnt |

+----------+------+---------+

| 1 | 1 | 1048576 |

| 2 | 10 | 1048576 |

+----------+------+---------+

select c1, count(*) as cnt from t1
group by c1;
+------+---------+
| c1 | cnt |
+------+---------+
1	1048576
2	1
10	1048576
+------+---------+

SQL API Basics - Refresh procedure

MV are refreshed with flexviews.REFRESH()
There are two steps to refreshing a MV
1. COMPUTE changes into delta tables
2. APPLY delta changes into the view
3. BOTH (do both steps at once)

SQL API Basics - Compute Deltas
call flexviews.refresh(@mvid,'COMPUTE',NULL);

select * from test.test_mv_delta;

+----------+--------+---------+------+-----+

| dml_type | uow_id | fv$gsn | c1 | cnt |

+----------+--------+---------+------+-----+

| 1 | 39 | 2097154 | 2 | 1 |

+----------+--------+---------+------+-----+

SQL API Basics - Apply deltas
call flexviews.refresh(@mvid,'APPLY',NULL);

select * from test.test_mv;

+----------+------+---------+

| mview$pk | c1 | cnt |

+----------+------+---------+

| 1 | 1 | 1048576 |

| 2 | 10 | 1048576 |

| 4 | 2 | 1 |

+----------+------+---------+

SQL API Basics - COMPLETE views

You can create views that can’t be refreshed,
but that can use all SQL constructs, including
OUTER join.

CREATE TABLE … AS and RENAME TABLE
are used by Flexviews to manage the view

SQL API Basics - COMPLETE (cont)
call flexviews.create('demo','top_customers','COMPLETE');

call flexviews.set_definition(

 flexviews.get_id('demo','dashboard_top_customers'),

 'select customer_id,
 sum(total_price) total_price,
 sum(total_lines) total_lines
 from demo.dashboard_customer_sales dcs
 group by customer_id
 order by total_price desc');

call flexviews.enable(flexviews.get_id
('demo','top_customers'));

FlexCDC Plugins

FlexCDC is pluggable

● A PHP interface is provided for FlexCDC
plugins

● Plugins receive each insert, update and
delete

● take action such as writing the changes to a
message queue

Example FlexCDC plugin*
require_once('plugin_interface.php');
class FlexCDC_Plugin implements FlexCDC_Plugin_Interface {

static function begin_trx($uow_id, $gsn,$instance) {
echo "START TRANSACTION: trx_id: $uow_id, Prev GSN: $gsn\n";

}
static function insert($row, $db, $table, $trx_id, $gsn,$instance) {

echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: INSERT, AT: $gsn\n"; print_r($row);
}
static function delete($row, $db, $table, $trx_id, $gsn,$instance) {

echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: DELETE, AT: $gsn\n"; print_r($row);
}
static function update_before($row, $db, $table, $trx_id, $gsn,$instance) {

echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: UPDATE (OLD), AT: $gsn\n"; print_r($row);
}
static function update_after($row, $db, $table, $trx_id, $gsn,$instance) {

echo "TRX_ID: $trx_id, Schema:$db, Table: $table, DML: UPDATE (NEW), AT: $gsn\n"; print_r($row);
}

}

* Not all functions represented

SQL API QUICK REFERENCE
● flexviews.create($schema, $table, $method);
● flexviews.get_id($schema, $table);
● flexviews.add_table($id, $schema, $table, $alias, $join_condition);
● flexviews.add_expr($id, $expr_type, $expr, $alias);
● flexviews.enable($id);
● flexviews.refresh($id, $method, $to_trx_id);
● flexviews.get_sql($id);

● flexviews.disable($id);

