Enlightenment: A Cross Platform
Window Manager and Toolkit

Dealing with Enlightenment portability issues in FreeBSD and elsewhere

Daniel Kolesa

Samsung Open Source Group
d.kolesa@samsung.com
Qoctaforge

FOSDEM 2015

Open Source Group

State of the ecosystem

Where are we now?

Overview

Overview

» During the last few years - drastic change of ecosystem

Overview

» During the last few years - drastic change of ecosystem
» Graphics stack in Linux kernel

Overview

» During the last few years - drastic change of ecosystem
» Graphics stack in Linux kernel

» Systemd

Overview

v

During the last few years - drastic change of ecosystem

v

Graphics stack in Linux kernel

v

Systemd

v

High level components depending on low level stuff (libudev)

BSDs in the ecosystem

BSDs in the ecosystem

> Lagging behind

BSDs in the ecosystem

» Lagging behind
» Losing compatibility with Linux stuff

BSDs in the ecosystem

» Lagging behind
» Losing compatibility with Linux stuff

» Custom solutions needed

BSDs in the ecosystem

v

Lagging behind
» Losing compatibility with Linux stuff

v

Custom solutions needed

v

(or wrapper shims)

BSDs in the ecosystem

v

Lagging behind
» Losing compatibility with Linux stuff

v

Custom solutions needed

v

(or wrapper shims)

v

(trying to avoid that)

General portability tips

:lINlll(APIS

Q

/'. .
A

m" (’

;

LINUK APISIEVERYWHERE

Overview

Overview

» We have a very diverse ecosystem

Overview

» We have a very diverse ecosystem

» This includes a wide range of operating systems

Overview

» We have a very diverse ecosystem
» This includes a wide range of operating systems

> Not all operating system have the same features

Overview

v

We have a very diverse ecosystem

v

This includes a wide range of operating systems

v

Not all operating system have the same features

v

Writing portable software is painful, but very much worth it

Overview

v

We have a very diverse ecosystem

v

This includes a wide range of operating systems

v

Not all operating system have the same features

v

Writing portable software is painful, but very much worth it

And the end result comes out cleaner

v

Don't write against a platform

Don't write against a platform

> A big mistake we've done in the EFL

Don't write against a platform

> A big mistake we've done in the EFL
» We wrote code against Linux

Don't write against a platform

> A big mistake we've done in the EFL
» We wrote code against Linux

» Every other platform is expected to implement the same APIs

Don't write against a platform

v

A big mistake we've done in the EFL

v

We wrote code against Linux

v

Every other platform is expected to implement the same APIs

> Wrappers then implement API shims

Why is this wrong?

Why is this wrong?

» System specific APls are often unnecessarily low level

Why is this wrong?

» System specific APls are often unnecessarily low level

» Low level — difficult to write

Why is this wrong?

» System specific APls are often unnecessarily low level
> Low level — difficult to write

» Low level — difficult to maintain

Why is this wrong?

v

System specific APIs are often unnecessarily low level

Low level — difficult to write

v

Low level — difficult to maintain

v

v

And a pain to port

Why is this wrong?

v

System specific APIs are often unnecessarily low level

Low level — difficult to write

v

v

Low level — difficult to maintain

v

And a pain to port

v

Also, every time you do it, a kitten dies

Why is this wrong?

v

System specific APIs are often unnecessarily low level

Low level — difficult to write

v

Low level — difficult to maintain

v

v

And a pain to port

v

Also, every time you do it, a kitten dies

Too late to save them now

v

The right approach

The right approach

> Write general code

The right approach Pramsuncd

> Write general code

> |If you need any specific functionality, design a high level API
for it

The right approach Pramsuncd

> Write general code

> |If you need any specific functionality, design a high level API
for it

> Use this APl from your code

The right approach Pramsuncd

v

Write general code

v

If you need any specific functionality, design a high level API
for it

v

Use this APl from your code

v

Write OS specific backends implementing this API

The right approach Pramsuncd

v

Write general code

v

If you need any specific functionality, design a high level API
for it

v

Use this APl from your code

v

Write OS specific backends implementing this API

v

Abstracted, high level, easy to write, easy to maintain

KISS principle

KISS principle

> Plays an important role

KISS principle

» Plays an important role

» Keep your API simple and as general purpose as possible

KISS principle

» Plays an important role
» Keep your API simple and as general purpose as possible

» Don’t implement very specific features

KISS principle

v

Plays an important role

v

Keep your APl simple and as general purpose as possible

v

Don't implement very specific features

v

Instead always ask yourself a question:

KISS principle

v

Plays an important role

v

Keep your APl simple and as general purpose as possible

v

Don't implement very specific features

v

Instead always ask yourself a question:

v

Can | generalize this? Can this be reused?

Don't repeat yourself!

Don't repeat yourself!

» Write reusable code

Don't repeat yourself!

» Write reusable code

» And actually reuse it

Don't repeat yourself!

» Write reusable code
» And actually reuse it

> The worst thing you can do is copy paste a snippet in 10
places

Don't repeat yourself!

» Write reusable code

v

And actually reuse it

v

The worst thing you can do is copy paste a snippet in 10
places

v

Any update will force you to update it in all 10 places

No internal dependencies

No internal dependencies

> Internal dependencies are bad

No internal dependencies

» Internal dependencies are bad

» They force you to maintain them

No internal dependencies

» Internal dependencies are bad
» They force you to maintain them

» They are not reusable even though they could be

No internal dependencies

v

Internal dependencies are bad

v

They force you to maintain them

v

They are not reusable even though they could be

v

They hinder portability

Do not lock youself to a toolchain

Do not lock youself to a toolchain

» Abusing compiler extensions might be tempting

Do not lock youself to a toolchain

» Abusing compiler extensions might be tempting

» End result is often maintenance hell

Do not lock youself to a toolchain

» Abusing compiler extensions might be tempting
» End result is often maintenance hell

» Porting such code to a new toolchain sucks

Domain specific languages are good

Domain specific languages are good

» DSLs allow you to reduce the amount of code

Domain specific languages are good

» DSLs allow you to reduce the amount of code

» They increase readability of your code by restricting it

Domain specific languages are good

» DSLs allow you to reduce the amount of code
» They increase readability of your code by restricting it

» They add extra safety

Domain specific languages are good

v

DSLs allow you to reduce the amount of code

v

They increase readability of your code by restricting it

v

They add extra safety

v

They are high level — easier to port

Portability is not only platforms

Portability is not only platforms

» Operating systems are the typical thing you imagine by
portability

Portability is not only platforms

» Operating systems are the typical thing you imagine by
portability

» But it also includes hardware architectures

Portability is not only platforms

» Operating systems are the typical thing you imagine by
portability

» But it also includes hardware architectures

» And programming languages (bindings)

Portability is not only platforms

v

Operating systems are the typical thing you imagine by
portability

v

But it also includes hardware architectures

v

And programming languages (bindings)
And rendering APls

v

Portability is not only platforms

v

Operating systems are the typical thing you imagine by
portability

v

But it also includes hardware architectures

v

And programming languages (bindings)
And rendering APls
Sound architectures

v

v

Portability is not only platforms

» Operating systems are the typical thing you imagine by
portability

» But it also includes hardware architectures
» And programming languages (bindings)

» And rendering APIs

» Sound architectures

» And others

Enlightenment/EFL overview

What is Enlightenment?

What is Enlightenment? Pramsuncd

» X11/Wayland desktop shell for Linux, the BSDs and others

What is Enlightenment? Pramsuncd

» X11/Wayland desktop shell for Linux, the BSDs and others
» Playground for the EFL

What is Enlightenment? Pramsuncd

» X11/Wayland desktop shell for Linux, the BSDs and others
» Playground for the EFL

» The prettiest window manager around

What is Enlightenment? Pramsuncd

v

X11/Wayland desktop shell for Linux, the BSDs and others
Playground for the EFL

v

v

The prettiest window manager around

v

Crashy mess with portability issues

What is EFL?

What is EFL?

» Enlightenment Foundation Libraries

What is EFL?

» Enlightenment Foundation Libraries

» Masterpiece of engineering

What is EFL?

» Enlightenment Foundation Libraries
» Masterpiece of engineering

> A suite of libraries originally created for Enlightenment

What is EFL?

v

Enlightenment Foundation Libraries

v

Masterpiece of engineering

v

A suite of libraries originally created for Enlightenment

v

These days it is what you mean by Enlightenment

What does the EFL include?

What does the EFL include?

» Low level libraries (such as C data structures)

What does the EFL include?

» Low level libraries (such as C data structures)

» Convenience libraries (D-Bus interface library, physics engine
wrapper and others)

What does the EFL include?

» Low level libraries (such as C data structures)

» Convenience libraries (D-Bus interface library, physics engine
wrapper and others)

» Graphical libraries (canvas, Ul toolkit and others)

What does the EFL include?

v

Low level libraries (such as C data structures)

v

Convenience libraries (D-Bus interface library, physics engine
wrapper and others)

Graphical libraries (canvas, Ul toolkit and others)

v

» Some non-portable wrapper mess

EFL portability problems
llSEil_._IkBllIkaTHEY SAID

ITWILL WORK FINE THEY SAID

Build system

Build system

» EFL uses GNU Autotools

Build system

» EFL uses GNU Autotools

» Autotools is a terrible monster that eats little children

Build system

» EFL uses GNU Autotools
» Autotools is a terrible monster that eats little children

» But it works acceptably on Unix-like systems

Build system

» EFL uses GNU Autotools

» Autotools is a terrible monster that eats little children
» But it works acceptably on Unix-like systems

> It's problematic on Windows

Build system

EFL uses GNU Autotools
Autotools is a terrible monster that eats little children

v

v

v

But it works acceptably on Unix-like systems

v

It's problematic on Windows
And kind of on OS X

v

Build system

EFL uses GNU Autotools
Autotools is a terrible monster that eats little children

v

v

v

But it works acceptably on Unix-like systems

v

It's problematic on Windows
And kind of on OS X

No real alternatives

v

v

Build system

» EFL uses GNU Autotools

» Autotools is a terrible monster that eats little children
» But it works acceptably on Unix-like systems

> It's problematic on Windows

» And kind of on OS X

» No real alternatives

» Potential alternatives so far proved to be worse

Build system

» EFL uses GNU Autotools

» Autotools is a terrible monster that eats little children
» But it works acceptably on Unix-like systems

> It's problematic on Windows

» And kind of on OS X

» No real alternatives

» Potential alternatives so far proved to be worse

» Had to go with the lesser evil

Ecore main loop

Ecore main loop

» Works on all supported platforms

Ecore main loop

» Works on all supported platforms

» Can use epoll on Linux for better performance

Ecore main loop

» Works on all supported platforms
» Can use epoll on Linux for better performance

» Therefore we should also have kqueue support

Ecore main loop

v

Works on all supported platforms

v

Can use epoll on Linux for better performance

v

Therefore we should also have kqueue support

v

Cleanup is needed - move the epoll parts out of mainloop
source

Ecore_audio

Ecore_audio

» Currently only supports PulseAudio (limited support for
ALSA)

Ecore_audio

» Currently only supports PulseAudio (limited support for
ALSA)

» PulseAudio works on the BSDs

Ecore_audio

» Currently only supports PulseAudio (limited support for
ALSA)

» PulseAudio works on the BSDs

» Most people don't want it

Ecore_audio

v

Currently only supports PulseAudio (limited support for
ALSA)

PulseAudio works on the BSDs
Most people don’t want it

v

v

v

Solution - implement OSS support

Ecore_ drm

Ecore_ drm

» Currently Linux only

Ecore_ drm

» Currently Linux only

» *BSD support would be relevant

Ecore_ drm

» Currently Linux only
» *BSD support would be relevant

» Uses libinput and optionally systemd-login/logind (otherwise
needs root)

Ecore_ drm

Currently Linux only

v

v

*BSD support would be relevant

v

Uses libinput and optionally systemd-login/logind (otherwise
needs root)

v

Solution for libinput - have to wait

Ecore_ drm

» Currently Linux only
» *BSD support would be relevant

» Uses libinput and optionally systemd-login/logind (otherwise
needs root)

» Solution for libinput - have to wait

» Solution for systemd-login/logind - perhaps ConsoleKit2?

Ecore_ drm

» Currently Linux only
» *BSD support would be relevant

» Uses libinput and optionally systemd-login/logind (otherwise
needs root)

» Solution for libinput - have to wait
» Solution for systemd-login/logind - perhaps ConsoleKit2?
» Or use the LoginKit shim

Ecore_ drm

» Currently Linux only
» *BSD support would be relevant

» Uses libinput and optionally systemd-login/logind (otherwise
needs root)

» Solution for libinput - have to wait
» Solution for systemd-login/logind - perhaps ConsoleKit2?
» Or use the LoginKit shim

» Depending on LoginKit feels messy

Ecore_wayland

Ecore_wayland

» Also Linux only right now

Ecore_wayland

» Also Linux only right now

» Uses evdev

Ecore_wayland

> Also Linux only right now
> Uses evdev

» Solution for evdev?

Ecore_wayland

Also Linux only right now

v

Uses evdev

v

Solution for evdev?

v

v

GSoC 2014 implements evdev in FreeBSD, but not yet
upstream

Ecore_wayland

Also Linux only right now

v

Uses evdev

v

Solution for evdev?

v

v

GSoC 2014 implements evdev in FreeBSD, but not yet
upstream

v

Other BSDs? Have everyone implement evdev?

Ecore_wayland

> Also Linux only right now
» Uses evdev
» Solution for evdev?

» GSoC 2014 implements evdev in FreeBSD, but not yet
upstream

» Other BSDs? Have everyone implement evdev?

» Or split away the evdev stuff and write OS specific backends?

Ecore_wayland

> Also Linux only right now
» Uses evdev
» Solution for evdev?

» GSoC 2014 implements evdev in FreeBSD, but not yet
upstream

» Other BSDs? Have everyone implement evdev?
» Or split away the evdev stuff and write OS specific backends?
» Also needs libwayland - need to wait for Wayland ports

Ecore_wayland

> Also Linux only right now
» Uses evdev
» Solution for evdev?

» GSoC 2014 implements evdev in FreeBSD, but not yet
upstream

» Other BSDs? Have everyone implement evdev?
» Or split away the evdev stuff and write OS specific backends?
» Also needs libwayland - need to wait for Wayland ports

» Blocks on ecore_drm

Eeze

» Udev wrapper library (+ libmount)

Eeze

» Udev wrapper library (+ libmount)
» Bad idea

» Udev wrapper library (+ libmount)
» Bad idea

» Temporary solution - use (and potentially extend) libdevq?

Eeze Pramsuncd

v

Udev wrapper library (+ libmount)
Bad idea

» Temporary solution - use (and potentially extend) libdevq?

v

v

Might not be possible

Udev wrapper library (+ libmount)
Bad idea

» Temporary solution - use (and potentially extend) libdevq?

v

v

v

Might not be possible

v

Current plan - deprecate Eeze

Udev wrapper library (+ libmount)
Bad idea

» Temporary solution - use (and potentially extend) libdevq?

v

v

v

Might not be possible

v

Current plan - deprecate Eeze

» Come up with a high level library instead

Eeze

Udev wrapper library (+ libmount)

Bad idea

Temporary solution - use (and potentially extend) libdevq?
Might not be possible

Current plan - deprecate Eeze

Come up with a high level library instead

Platform specific backends in the library (udev,
devd/libdevq...)

Enlightenment portability

I DON'T ALWAYS REMOVE
HAL'SUPPORT

]

BUT WHEN 1DO, I DON'T
PROVIDE A FALLBACK

Overview

Overview

» EFL portability problems also affect Enlightenment

Overview

» EFL portability problems also affect Enlightenment
» No wayland support on *BSD

Overview

» EFL portability problems also affect Enlightenment
» No wayland support on *BSD

» No eeze on *BSD

Overview

v

EFL portability problems also affect Enlightenment

v

No wayland support on *BSD
No eeze on *BSD

And other problems

v

v

Ptrace

Ptrace

» Since a while ago, Enlightenment startup executable uses
ptrace

Ptrace

» Since a while ago, Enlightenment startup executable uses
ptrace

» Used to catch segfaults and display a window allowing a
restart

Ptrace

» Since a while ago, Enlightenment startup executable uses
ptrace

» Used to catch segfaults and display a window allowing a
restart

» Replaces old unreliable way

Ptrace

» Since a while ago, Enlightenment startup executable uses
ptrace

» Used to catch segfaults and display a window allowing a
restart

» Replaces old unreliable way
» PT_GETSIGINFO is used - Linux specific extension

Ptrace

» Since a while ago, Enlightenment startup executable uses
ptrace

» Used to catch segfaults and display a window allowing a
restart

» Replaces old unreliable way
» PT_GETSIGINFO is used - Linux specific extension

» Therefore ptrace is not used on *BSD and a crash will go to
tty

Eeze

> Used to manage devices in Enlightenment

> Used to manage devices in Enlightenment

» No eeze — no device management

> Used to manage devices in Enlightenment
» No eeze — no device management

» Also used for backlight handling

v

Used to manage devices in Enlightenment

v

No eeze — no device management

v

Also used for backlight handling

v

Also used for temperature monitoring

v

Used to manage devices in Enlightenment

v

No eeze — no device management

v

Also used for backlight handling

v

Also used for temperature monitoring

v

Solution: eeze replacement

Mixer

Mixer

» Current mixer module only supports PulseAudio and ALSA

Mixer Pramsuncd

» Current mixer module only supports PulseAudio and ALSA
> Also causes high CPU loads on FreeBSD with Pulse

Mixer

» Current mixer module only supports PulseAudio and ALSA
> Also causes high CPU loads on FreeBSD with Pulse

» New mixer in development

Mixer

v

Current mixer module only supports PulseAudio and ALSA
Also causes high CPU loads on FreeBSD with Pulse

» New mixer in development

v

v

OSS support needed in the new mixer

Other problems

Distribution

Distribution

» FreeBSD ports provide EFL/E — good

Distribution Pramsuncd

» FreeBSD ports provide EFL/E — good

» Poor communication with upstream EFL and the other way
around

Distribution Pramsuncd

» FreeBSD ports provide EFL/E — good

» Poor communication with upstream EFL and the other way
around

> I'm the only bridge

Distribution

v

FreeBSD ports provide EFL/E — good

Poor communication with upstream EFL and the other way
around

v

v

I'm the only bridge

v

Relatively low interest (but there is some)

Distribution

v

FreeBSD ports provide EFL/E — good

Poor communication with upstream EFL and the other way
around

v

v

I'm the only bridge

v

Relatively low interest (but there is some)

v

Situation getting better

Windows

MENTION'WINDOWS IN A BSD
PRESENTATION?

I TOOLIKETO lI\lE IlﬁliillllSlY

The good

The good

» Evil library provides part of POSIX

The good

» Evil library provides part of POSIX
» Most components have Windows related code

The good

» Evil library provides part of POSIX
» Most components have Windows related code

» Native gdi/ddraw graphics backends

The good

v

Evil library provides part of POSIX
Most components have Windows related code

v

v

Native gdi/ddraw graphics backends

v

Overall decent code coverage

Build system

Build system

» Because of autotools, we can only support MinGW/MSYS
environments

Build system

» Because of autotools, we can only support MinGW/MSYS
environments

» Create Visual Studio project files?

Build system

» Because of autotools, we can only support MinGW/MSYS
environments

» Create Visual Studio project files?
> Use CMake? Premake? ...

Build system

Because of autotools, we can only support MinGW/MSYS
environments

v

v

Create Visual Studio project files?
Use CMake? Premake? ...

Neither of these solutions provide some of our used Autotools
features

v

v

Build system

» Because of autotools, we can only support MinGW/MSYS
environments

» Create Visual Studio project files?
> Use CMake? Premake? ...

» Neither of these solutions provide some of our used Autotools
features

» No distcheck, no easy file pre-generation

Build system

» Because of autotools, we can only support MinGW/MSYS
environments

» Create Visual Studio project files?
> Use CMake? Premake? ...

» Neither of these solutions provide some of our used Autotools
features

» No distcheck, no easy file pre-generation

» Create build scripts to trigger from build system?

Availability

Availability

» The above — difficult to ship

Availability

» The above — difficult to ship
» No official Windows builds

Availability

» The above — difficult to ship
» No official Windows builds

» win-builds.org provides unofficial builds

Other issues

Other issues

» Ecore audio support should be added

OS X

0SK I/S ALMOST

The good

The good

» Native Cocoa backend

The good

» Native Cocoa backend

» Unix-like guts — easy to cover

The good

» Native Cocoa backend
» Unix-like guts — easy to cover
» Some FreeBSD APlIs present (kqueue)

Build system

Build system

» Similar issues as on Windows to a lesser degree

Build system

» Similar issues as on Windows to a lesser degree

» Standard shell tools are present

Build system

» Similar issues as on Windows to a lesser degree
» Standard shell tools are present
» XCode project files?

Availability

Availability

» No official or unofficial builds (as far as | know)

Availability

» No official or unofficial builds (as far as | know)

> You have to compile on your own

Availability

» No official or unofficial builds (as far as | know)
> You have to compile on your own

» Major lack of testing (no Cl setup, very few developers)

Final summary

Final summary

» Linux infra changes made an already difficult thing even more
difficult

Final summary

» Linux infra changes made an already difficult thing even more
difficult

» Code modularization and abstraction is needed

Final summary

» Linux infra changes made an already difficult thing even more
difficult

» Code modularization and abstraction is needed

> Build system might not be ideal, but it's the best we have

Final summary

Linux infra changes made an already difficult thing even more
difficult

Code modularization and abstraction is needed

v

v

v

Build system might not be ideal, but it's the best we have

v

Windows support is a little painful

Final summary

v

Linux infra changes made an already difficult thing even more
difficult

Code modularization and abstraction is needed

v

v

Build system might not be ideal, but it's the best we have

v

Windows support is a little painful

v

Same goes for Mac

Final summary

v

Linux infra changes made an already difficult thing even more
difficult

Code modularization and abstraction is needed

v

v

Build system might not be ideal, but it's the best we have

v

Windows support is a little painful

v

Same goes for Mac

v

Improvements are coming :)

Thank you.

Daniel Kolesa
Samsung Open Source Group
d.kolesa@samsung.com
Q@octaforge
FOSDEM 2015

Open Source Group

