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During the last few years - drastic change of ecosystem
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Graphics stack in Linux kernel

v

Systemd

v

High level components depending on low level stuff (libudev)
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Lagging behind
» Losing compatibility with Linux stuff

v

Custom solutions needed

v

(or wrapper shims)

v

(trying to avoid that)
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v

We have a very diverse ecosystem

v

This includes a wide range of operating systems

v

Not all operating system have the same features

v

Writing portable software is painful, but very much worth it

And the end result comes out cleaner

v
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Don't write against a platform

v

A big mistake we've done in the EFL

v

We wrote code against Linux

v

Every other platform is expected to implement the same APIs

> Wrappers then implement API shims
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Why is this wrong?

v

System specific APIs are often unnecessarily low level

Low level — difficult to write

v

Low level — difficult to maintain

v

v

And a pain to port

v

Also, every time you do it, a kitten dies

Too late to save them now

v
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v

Write general code

v

If you need any specific functionality, design a high level API
for it

v

Use this APl from your code

v

Write OS specific backends implementing this API

v

Abstracted, high level, easy to write, easy to maintain
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KISS principle

v

Plays an important role

v

Keep your APl simple and as general purpose as possible

v

Don't implement very specific features

v

Instead always ask yourself a question:

v

Can | generalize this? Can this be reused?
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Don't repeat yourself!

» Write reusable code

v

And actually reuse it

v

The worst thing you can do is copy paste a snippet in 10
places

v

Any update will force you to update it in all 10 places
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No internal dependencies

v

Internal dependencies are bad

v

They force you to maintain them

v

They are not reusable even though they could be

v

They hinder portability
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Do not lock youself to a toolchain

» Abusing compiler extensions might be tempting
» End result is often maintenance hell

» Porting such code to a new toolchain sucks
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Domain specific languages are good

v

DSLs allow you to reduce the amount of code

v

They increase readability of your code by restricting it

v

They add extra safety

v

They are high level — easier to port
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Portability is not only platforms

» Operating systems are the typical thing you imagine by
portability

» But it also includes hardware architectures
» And programming languages (bindings)

» And rendering APIs

» Sound architectures

» And others
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X11/Wayland desktop shell for Linux, the BSDs and others
Playground for the EFL

v

v

The prettiest window manager around

v

Crashy mess with portability issues
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v

Enlightenment Foundation Libraries

v

Masterpiece of engineering

v

A suite of libraries originally created for Enlightenment

v

These days it is what you mean by Enlightenment
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What does the EFL include?

v

Low level libraries (such as C data structures)

v

Convenience libraries (D-Bus interface library, physics engine
wrapper and others)

Graphical libraries (canvas, Ul toolkit and others)

v

» Some non-portable wrapper mess



EFL portability problems
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Build system

» EFL uses GNU Autotools

» Autotools is a terrible monster that eats little children
» But it works acceptably on Unix-like systems

> It's problematic on Windows

» And kind of on OS X

» No real alternatives

» Potential alternatives so far proved to be worse

» Had to go with the lesser evil
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Ecore main loop

v

Works on all supported platforms

v

Can use epoll on Linux for better performance

v

Therefore we should also have kqueue support

v

Cleanup is needed - move the epoll parts out of mainloop
source
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Ecore_audio

v

Currently only supports PulseAudio (limited support for
ALSA)

PulseAudio works on the BSDs
Most people don’t want it

v

v

v

Solution - implement OSS support
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Ecore_ drm

» Currently Linux only
» *BSD support would be relevant

» Uses libinput and optionally systemd-login/logind (otherwise
needs root)

» Solution for libinput - have to wait
» Solution for systemd-login/logind - perhaps ConsoleKit2?
» Or use the LoginKit shim

» Depending on LoginKit feels messy
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Ecore_wayland

> Also Linux only right now
» Uses evdev
» Solution for evdev?

» GSoC 2014 implements evdev in FreeBSD, but not yet
upstream

» Other BSDs? Have everyone implement evdev?
» Or split away the evdev stuff and write OS specific backends?
» Also needs libwayland - need to wait for Wayland ports

» Blocks on ecore_drm
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Eeze

Udev wrapper library (+ libmount)

Bad idea

Temporary solution - use (and potentially extend) libdevq?
Might not be possible

Current plan - deprecate Eeze

Come up with a high level library instead

Platform specific backends in the library (udev,
devd/libdevq...)



Enlightenment portability

I DON'T ALWAYS REMOVE
HAL'SUPPORT

]

BUT WHEN 1DO, I DON'T
PROVIDE A FALLBACK
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EFL portability problems also affect Enlightenment

v

No wayland support on *BSD
No eeze on *BSD

And other problems

v

v
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Ptrace

» Since a while ago, Enlightenment startup executable uses
ptrace

» Used to catch segfaults and display a window allowing a
restart

» Replaces old unreliable way
» PT_GETSIGINFO is used - Linux specific extension

» Therefore ptrace is not used on *BSD and a crash will go to
tty
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Used to manage devices in Enlightenment

v

No eeze — no device management

v

Also used for backlight handling

v

Also used for temperature monitoring

v

Solution: eeze replacement
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Mixer

v

Current mixer module only supports PulseAudio and ALSA
Also causes high CPU loads on FreeBSD with Pulse

» New mixer in development

v

v

OSS support needed in the new mixer
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Distribution

v

FreeBSD ports provide EFL/E — good

Poor communication with upstream EFL and the other way
around

v

v

I'm the only bridge

v

Relatively low interest (but there is some)

v

Situation getting better



Windows

MENTION'WINDOWS IN A BSD
PRESENTATION?
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The good
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Evil library provides part of POSIX
Most components have Windows related code

v

v

Native gdi/ddraw graphics backends

v

Overall decent code coverage
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Build system

» Because of autotools, we can only support MinGW/MSYS
environments

» Create Visual Studio project files?
> Use CMake? Premake? ...

» Neither of these solutions provide some of our used Autotools
features

» No distcheck, no easy file pre-generation

» Create build scripts to trigger from build system?
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Availability

» The above — difficult to ship
» No official Windows builds

» win-builds.org provides unofficial builds
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Other issues

» Ecore audio support should be added



OS X
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The good

» Native Cocoa backend
» Unix-like guts — easy to cover
» Some FreeBSD APlIs present (kqueue)
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Build system

» Similar issues as on Windows to a lesser degree
» Standard shell tools are present
» XCode project files?
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Availability

» No official or unofficial builds (as far as | know)
> You have to compile on your own

» Major lack of testing (no Cl setup, very few developers)
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Final summary

v

Linux infra changes made an already difficult thing even more
difficult

Code modularization and abstraction is needed

v

v

Build system might not be ideal, but it's the best we have

v

Windows support is a little painful

v

Same goes for Mac

v

Improvements are coming :)
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