
Design and Implementation
of a Perl number theory
module

Dana Jacobsen, 1 Feb 2015
FOSDEM 2015

Intro

Number Theory

Primes, primality, factoring

Why do we care?

What does Perl/ntheory offer

Simple Example (1a)
(2012) Send your resume to:

Simple Example (1b)

Output:

Simple Example

Project Euler 211: sum n < 64M where the sum
of the squares of divisors is a perfect square

History of Perl/ntheory

2012 May:
 dissatisfaction with existing modules
 simple sieve and ~10 functions for native ints
 released as Math::Prime::Util

2012 - 2015:
 bigints, more speed, more features
 > 120 functions

Why Perl

- I was already using Perl

- Contrast with Pari/GP:
 Pari/GP has great math, adding language
 Perl has great language, adding math

- Math::Pari, Pari/GP, SymPy, FLINT, SAGE,
Mathematica, ...

Design (initial)

 functional vs. OO

 input validation

 faster than existing modules

 one module vs. many

 Perl with C code included (XS)

Design (current prescriptive)

 Correct

 Useful

 Lightweight

 Fast

 Portable

Design: Correct
> 7000 tests in install suite

Many additional tests

Test all configurations (PP, XS, GMP, MPFR)

TravisCI

Compare to other software

Found issues in Crypt::Primes, Math::Pari, Math::Big, Math::
BigInt::GMP, FLINT, Perl6, ...

Design: Useful

Features of 10+ other modules

Used to make new Crypt:: modules

Extended some OEIS sequences

factordb.com uses ECPP verifier (elliptic curve primality proofs)
-

RosettaCode, Project Euler, StackOverflow

Standalone C versions of many parts

Design: Lightweight

Startup cost and memory use

Important for scripts

Less than most other modules

CPU

Memory

Fast - Prime generation

Much faster than other Perl modules

faster than Pari/GP

about as fast at Bernstein’s primegen

2x slower than primesieve and yafu

Fast - primality testing (64-bit)

25x faster than Math::Pari

5 - 24,000x faster than Math::Prime::XS

2000x faster than Perl6 native is-prime

2x faster than Pari/GP 2.8

Fast - primality testing (100 digits)
4x faster than Math::Pari’s weak test
5x faster than Math::Primality
10x faster than Perl6 native is-prime
2x faster than Pari/GP 2.8
20x faster than OpenPFGW’s weak test

OpenPFGW faster for ~5000 digits, much faster for 50k+,
Relatively weak test (great pre-test)

Fast - Primality Proofs

Primality proofs:
 100 digit proofs with certificates in milliseconds
 Fastest AKS implementation
 Fastest open source ECPP

Good alternatives: Primo, mpz_aprcl, Pari/GP

Fast - Factoring

Much faster than other modules for 64-bit
Faster than Pari/GP for 64-bit
Similar to Pari/GP for 20+ digits

State of the art:
 yafu, msieve, gmp-ecm, CADO-NFS, etc.

Fast - Examples
OEIS A066265: Added new terms to semiprime counts
OEIS A181671: Added more Ramanujan primes
OEIS A067836: Frank Buss conjecture, many more terms
Lucas pseudoprimes to 10^14

Prime gaps: 48% of all record prime gaps

Not fastest at everything: partitions, RiemannZeta

Portability
32-bit, 64-bit, big/little endian

Linux, Solaris, *BSD, Win32, Cygwin, AIX

Perl back to 5.6 (ouch)

Can run entirely in pure Perl

Total non-CORE chain: 4 modules

Tries to use GMP, Math::BigInt::{GMP,Pari}, Math::MPFR

Issues: threading

All functions should be thread-safe

Internals are not multi-threaded

Win32…. <argh>

Issues: bigints

CORE Math::BigInt -- very slow

Math::BigInt::GMP -- better

Math::GMPz, Math::GMP, Math::Pari, …

bugs in modules, including core modules

C+GMP -- very fast

Ordering (Perl, XS, GMP)

Perl Perl -> {XS,GMP} XS -> {GMP,Perl}

Input Validation (Perl)
Native (Perl)
BigInt (Perl)

Input Validation (Perl)
Call native XS if possible
Call bigint GMP if possible
Native (Perl)
BigInt (Perl)

Input Validation (XS)
Native (XS) if possible
call direct to GMP if
possible
load and call Perl code:
 Native (Perl)
 BigInt (Perl)

Simple but slow overhead is still very large Tricky XS code
Lowest overhead by far
Front end for Pure Perl

Optimizing at different sizes

What is a big number?

primes [2,n] vs [a,b]

nth_prime and nth_prime_approx

Primes: Count 1000M primes
TIME MODULE NOTES

~500s Python SymPy primepi uses ~3 GB

90s ntheory (PP) PP string sieve

71s Bit::Vector XS sieve

46s Math::Prime::XS XS sieve

10.3s Math::Prime::FastSieve XS sieve

2.8s Pari/GP primepi (no tables)

0.5s ntheory (private function) mod-30 sieve (no tables)

0.24 primesieve fastest sieve software

0.07s ntheory (PP) PP Lehmer

0.001s ntheory LMO

Lists, blocks, Iterators
my $aref = primes(2**27, 2**28);

forprimes { … } 1e9

forcomposites { … } 10**22,10**22+10000

my $it = prime_iterator;

my $itobj = prime_iterator_object;

tie my @pr, 'Math::Prime::Util::PrimeArray';

Primality

11 compositeness tests
3 proof methods (BLS75, ECPP, AKS)

provable prime or probable prime

What should is_prime() do?

Factoring

methods:
Pollard Rho
p-1, p+1
Fermat, Hart’s OLF
SQUFOF
ECM
Quadratic Sieve

also znlog(a,g,p) for solving

Combinatorics

forpart { … } $n integer partitions
forcomb { … } $n,$k combinations
forperm { … } $n permutations

Misc
vecsum vecprod vecmin vecmax vecextract

vecreduce is_power gcd lcm gcdext

chinese primorial pn_primorial factorial binomial

partitions sqrtint valuation hammingweight kronecker

invmod moebius mertens euler_phi jordan_totient

carmichael_lambda exp_mangoldt liouville znorder znprimroot

chebyshev_theta chebyshev_psi consecutive_integer_lcm lucasu lucasv

lucas_sequence bernfrac bernreal harmfrac harmreal

stirling ExponentialIntegral LogarithmicIntegral RiemannZeta

RiemannR LambertW Pi

Examples

Examples

Examples

π

π

π

Examples

Examples (Lucas-Carmichael #s)

Thank you, and Questions

Random Primes

uniformity
custom RNG if desired
use in modules
random proven primes

