Thou Ghalt not Leat nour Keys:

Practical Key Privilege
Separation Using Caml Crush

R. BENADJILA
T. CALDERON

M. DAUBIGNARD

French
Network and r

February 1st, 2015

Information
Security

—»nZ3>

Thou Ghalt LUse
Gtrong Passtoords
Thou Shalt Harden
Your OGS

Thou Shalt
Geparate Privileges
Thou Shalt Keep
Goftoare Updated
Thou Shalt LUse
Gtrong Cepptography

Thou Shalt Geparate]
Admin/User Netroort

Thou Shalt Chect
for Malroare

Thou Ghalt Kill
3ombies

st.NASOd

|Context

Context

m Bob hosts a service, wants Alice to access it safely:
» Hence, TLS is deployed:
» Bob is authenticated
» Data integrity and confidentiality
» Bob is satisfied, Alice is safe

1/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context

Context

m Bob hosts a service, wants Alice to access it safely:
» Hence, TLS is deployed:
» Bob is authenticated
» Data integrity and confidentiality
» Bob is satisfied, Alice is safe

m But how safe is she?

1/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context

Context

m Bob hosts a service, wants Alice to access it safely:
» Hence, TLS is deployed:
» Bob is authenticated
» Data integrity and confidentiality
» Bob is satisfied, Alice is safe

m But how safe is she?

m Heartbleed was a painful reminder:
» Using TLS is not enough
» Vulnerabilities in TLS stack can lead to private key
leakage

1/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Heartbleed
|Heartbleed

Heartbleed

m Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

SSL/TLS Client
Apache Worker

sums ()

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Heartbleed
|Heartbleed

Heartbleed

m Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

m Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read

SSL/TLS Client
Apache Worker

Read Apache Memory |« --| SSLATLS - -]

aoeds Auowsly ayoedy

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Heartbleed
|Heartbleed

Heartbleed

m Heartbleed is a security bug that affects an
implementation of a TLS protocol extension
m Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read
m Memory from the server process can be retrieved
» Application data
» TLS symetric session keys
» Private key of the server

SSL/TLS Client Apache Process
Apache Worker >
S
[e]
=
(0]
3
Read Apache Memory | -- = [Crypto Operations 3
=0 <
l o
o
[
=0 2

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Heartbleed

|Consequences

Consequences

m Compromission of private keys
» MiTM of the server
» Decryption of past TLS sessions

3/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Heartbleed

|Consequences

Consequences

m Compromission of private keys
» MiTM of the server
» Decryption of past TLS sessions

m Massive renewal of enterprise and private credentials
» Costly (think thousands of X.509 certificates to renew)
» Painful

|

3/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

m Keys must be usable without needing to know their
values

value

Q
Encrypt (SECRET ,

Secure area
- Cryptography

@24 (@6G.

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

m Keys must be usable without needing to know their
values

m Keys are refered to using handles (pointers)

handle
Encrypt (SECRET, O)

Secure area :
- Cryptography
- Secure storage

X509 %

@24 (@6G.

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

m Keys must be usable without needing to know their
values

m Keys are refered to using handles (pointers)

Secure area : Decrypt (aze'@4g.-» O)
- Cryptography
- Secure storage

SECRET

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures
| PKCS#11

The PKCS#11 security API

m PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS

PE
N

HM status: [N
OK!

i
i
=

@ ¥
[T
I o
X
e
o~

P PKCS#11 a

APACHE dlieiiis i i i: S llgz.alds%r.;.m

[i 2
i % | S NetHSM
. O ! 2 — -
X I S
a 1 N
~C

5/15 Thou Shalt not Leak your Keys - February 1st, 2015

eaJe 3snu]

|Current countermeasures
| PKCS#11

The PKCS#11 security API

m PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS
» RSA labs provides pkcs11.h
» Manufacturers provide a shared library (¢‘middleware’’)

PE
N

HM status: [N
OK!

i
i
=

@ 3
[T}

I o
X
L a
L~
P PKCS#11 a
APACHE dlieiiis i i i: S ‘I;z'a‘d&r';'w
[1 S
i % | S NetHSM
- e} | N - =
X I S
o | X
~

5/15 Thou Shalt not Leak your Keys - February 1st, 2015

eaJe 3snu]

|Current countermeasures
| PKCS#11

The PKCS#11 security API

m PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS
» RSA labs provides pkcs11.h
» Manufacturers provide a shared library (¢‘middleware’’)

m The shared library handles the hardware:
» Sends APDU sequences to smartcards (via USB, ...)
» Sends network packets to network HSMs
» Sends frames to USB dongles

@ ! ot

=
—
=)
A
o
X
a I
= HSM status:
P [PKCS#11 | = | okt
APACHE clients ; i i; AN T a0
[| N\
S RN et
¢ e} | N = =
X | N
a i AN

~

5/15 Thou Shalt not Leak your Keys - February 1st, 2015

eaJe 3snu]

|Current countermeasures

|Use case example
Scenario: a TLS enabled HT'TP web server

m Compatible web servers can be configured to use PKCS#11

Apache Process
Apache Worker
PKCS#11 Interface

aoeds Auowsy ayoedy

6/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures

|Use case example

Scenario: a TLS enabled HT'TP web server

m Compatible web servers can be configured to use PKCS#11

m Hardware (certified) devices offer:

» High degree of confidence
» Inconvenient in production environment and costly

Apache Process
Apache Worker

mod_ nss.so

PKCS#11 Interface

PKCS#11 Interface

I3

aoeds Auowsy ayoedy

=]

TOKEN

6/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures

|Use case example
Scenario: a TLS enabled HTTP web server

m Compatible web servers can be configured to use PKCS#11
m Hardware (certified) devices offer:

» High degree of confidence
» Inconvenient in production environment and costly

m Software PKCS#11 devices offer:

» Convenient to deploy and some are open-source
» Keys are mapped in memory

Apache Process
Apache Worker

mod_ nss.so

PKCS#11 Interface

PKCS#11 Interface
libsofthsm.so

aoeds Auowsy aydedy

HSM_DB

4

6/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Current countermeasures

[Mini wrap-up

Let’s sum up

Cost | Security

HSM X v v/ =
IP.addr:
192.168.1.10

NetHSM

7/15 Thou Shalt not Leak your Keys - February 1st, 2015 @

|Current countermeasures
[Mini wrap-up

Let’s sum up

cost | security | Perfornance

HSM X v v/ =
IP.addr:
192.168.1.10

NetHSM

7/15 Thou Shalt not Leak your Keys - February 1st, 2015 @

|Current countermeasures
[Mini wrap-up

Let’s sum up

cost | security | Perfornance |

HSM X v v =
IP.addr:
192.168.1.10

]W]@

ﬂ

PKCS#11 Interface
libsofthsm.so

7/15 Thou Shalt not Leak your Keys - February 1st, 2015 ?

|Current countermeasures
[Mini wrap-up

Let’s sum up

| cost | security | Perfornance |

HSM

X

4

v

HSH status: [
OK!
IP addr:
192.168.1.10
etho
H,ems” [ethi] [etho]

7/15 Thou Shalt not Leak your Keys - February 1st, 2015

PKCS#11 Interface

llI |

|Caml Crush
|Concepts and Architecture

PKCS+#11 API through a Proxy

m Can we use a low-cost solution such as SoftHSM?

m What if we leverage process isolation?

8/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Concepts and Architecture

PKCS+#11 API through a Proxy

m Can we use a low-cost solution such as SoftHSM?
m What if we leverage process isolation?

m Caml Crush is a PKCS#11 filtering proxy

PKCS#11 interface «—-[Filtering proxy]«—- PKCS#11 interface

Cryptographic Cryptoki
resource application

APACHE
8/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Concepts and Architecture

PKCS+#11 API through a Proxy

PKCS#11 interface

PKCS#11 interface

Cryptoki M
libsofthsm.so icati
1bsotthsm.s application APACHE

9/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush

|Concepts and Architecture

PKCS+#11 API through a Proxy

Caml Crush Process

PKCS#11 proxy

|
‘

i

‘

‘

; PKCS#11 (" RPC layer)}

i Filter

‘

‘

TCP/UNIX socket CLienCRIIbIaEY

{ socket =+ RPC layer

(Optional TLS) I

PKCS#11 interface

Cryptoki M
application APACHE

PKCS#11 interface

2 libsofthsm.so
[1

9/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Deployment

|Caml Crush

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token

10/15

aoeds AJowsly ysnJa) we)d

Caml Crush Process
RPC layer ---

PKCS#11
Filter

PKCS#11 Interface

PKCS#11 Interface
libsofthsm.so

| || ||

1]

<y
,

Thou Shalt not Leak your

HSM_DB

4 UNIX socket

Keys - February 1st, 2015

Apache Process
Apache Worker

PKCS#11 Interface

PKCS#11 Interface

libcamlcrush.so

R B RPC layer

aoeds Auowsly aydedy

|Deployment

|Caml Crush

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token

m Private key leak is avoided

10/15

aoeds AJowsly ysnJa) we)d

| || ||

Caml Crush Process

RPC layer ---

PKCS#11
Filter

PKCS#11 Interface
PKCS#11 Interface

libsofthsm.so

‘l%J"
©
HSM_DB

Thou Shalt not Leak your

4 UNIX socket

Keys - February 1st, 2015

Apache Process
Apache Worker

PKCS#11 Interface

PKCS#11 Interface
libcamlcrush.so

R B RPC layer

aoeds Auowsly aydedy

|Caml Crush
|Deployment

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token
m Private key leak is avoided

m Minimal 0S-level hardening required
» ‘‘Dedicated uid/gid’’ for Apache and proxy

Caml Crush Process
RPC layer - Apache Worker

PKCS#11
T

PKCS#11 Interface
PKCS#11 Interface i PKCS#11 Interface

aoeds AJowsly ysnJa) we)d

b

libsofthsm.so libcamlcrush.so
(N RPC layer

(1‘*
©
HSM_DB

10/15 Thou Shalt not Leak your Keys - February 1st, 2015

aoeds Auowsly aydedy

|Deployment

|Caml Crush

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token

m Private key leak is avoided

m Minimal 0S-level hardening required

» ‘‘Dedicated uid/gid’’ for Apache and proxy
» Coherent file permission on object database

10/15

aoeds AJowsly ysnJay we)d

Caml Crush Process
RPC layer ---

PKCS#11
Filter

PKCS#11 Interface

PKCS#11 Interface
libsofthsm.so

bk

(1“
©
HSM_DB

{ UNIX socket

Thou Shalt not Leak your

Keys - February 1st, 2015

Apache Worker

PKCS#11 Interface

PKCS#11 Interface

libcamlcrush.so

R B RPC layer

aoeds Auowsy aydedy

|Caml Crush
|Deployment

Why use Caml Crush?

m I heard about other PKCS#11 proxies, why use yours ?

11/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Why use Caml Crush?

m I heard about other PKCS#11 proxies, why use yours ?

m Caml Crush is security oriented

11/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Why use Caml Crush?

m I heard about other PKCS#11 proxies, why use yours ?
m Caml Crush is security oriented

OCaml programming language

Able to sandbox itself

Blocks known cryptographic attacks
Restricts cryptographic mechanisms
Object filtering capabilities
Token read-only mode

vV vV vV vV VY VY

11/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Beyond Heartbleed

m Other threats?

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Beyond Heartbleed

m Other threats?

m Think remote code execution

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Beyond Heartbleed

m Other threats?
m Think remote code execution
» Process memory inspection (we’ve seen and addressed
that)

» Use the PKCS#11 stack as an oracle
» Could lead to private key leak

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Beyond Heartbleed

m Other threats?
m Think remote code execution
» Process memory inspection (we’ve seen and addressed
that)
» Use the PKCS#11 stack as an oracle
» Could lead to private key leak

m Caml Crush filtering engine protects from such attacks

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush
|Deployment

Beyond Heartbleed

Other threats?

m Think remote code execution

» Process memory inspection (we’ve seen and addressed
that)

» Use the PKCS#11 stack as an oracle
» Could lead to private key leak

m Caml Crush filtering engine protects from such attacks

Other deployments
» Transform local cryptographic tokens (PCI HSM,
smartcard) into network devices

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Caml Crush

|Performance

Performances

m No overhead when using plain SoftHSM

response time (ms)

13/15

11

5
0 10000

ab -n 100000 -c 10

NSS raw
NSS P11 SoftHSM ———

W

1

f

20000 30000 40000 50000 60000
number of requests

Thou Shalt not Leak your Keys - February 1st, 2015

70000

80000

90000

|Caml Crush

|Performance

Performances

m Reasonable overhead with Caml Crush

15
14
13

response time (ms)
—_
(=}

13/15

ab -n 100000 -c 10

NISS raw -

NSS P11 SoftHSM ———
NSS Caml Crush P11 ———

/ ~ +3ms /[

Il
/

/i

10000 20000 30000 40000 50000 60000 70000 80000
number of requests

Thou Shalt not Leak your Keys - February 1st, 2015

90000

|Caml Crush
|Server compatibility

Server compatibility

m Web server:
» Apache (mod_nss', mod_gnutls?)

» NGINX (since 1.7.9%)

m Other server applications:
» Ex: LDAPS for OpenLDAP
» Should work transparently if linked to GnuTLS

'PFS is not supported
’requires a patch from Nikos
3using OpenSC engine_pkcs11

14/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Conclusion

Conclusion

m Caml Crush has benefits applicable to TLS stacks

m Caml Crush is also useful in a variety of other
scenarios

® Soon in Debian Sid

m Caml Crush is open source:

» https://github.com/ANSSI-FR/caml-crush

15/15 Thou Shalt not Leak your Keys - February 1st, 2015

https://github.com/ANSSI-FR/caml-crush

|Conclusion

Conclusion

m Caml Crush has benefits applicable to TLS stacks

m Caml Crush is also useful in a variety of other
scenarios

® Soon in Debian Sid

m Caml Crush is open source:

» https://github.com/ANSSI-FR/caml-crush

Thou Shalt Ast Questions!

15/15 Thou Shalt not Leak your Keys - February 1st, 2015

https://github.com/ANSSI-FR/caml-crush

|Compatibility

Compatibility Matrix

C client 0Caml client | pkcsliproxyd | SSL/TLS
Unix | TCP | Unix TCP Unix TCP

Linux

FreeBSD

Mac 0S X X

Win32 (native) X X X X

Win32 (cygwin)

m Caml Crush works on Little/Big Endian platforms (even
with hybrid architectures between client and server)

16/15 Thou Shalt not Leak your Keys - February 1st, 2015

	Context
	Heartbleed
	Heartbleed
	Consequences

	Current countermeasures
	Security API
	PKCS#11
	Use case example
	Mini wrap-up

	Caml Crush
	Concepts and Architecture
	Deployment
	Performance
	Server compatibility

	Conclusion

