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|Context

Context

m Bob hosts a service, wants Alice to access it safely:
» Hence, TLS is deployed:
» Bob is authenticated
» Data integrity and confidentiality
» Bob is satisfied, Alice is safe
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|Context

Context

m Bob hosts a service, wants Alice to access it safely:
» Hence, TLS is deployed:
» Bob is authenticated
» Data integrity and confidentiality
» Bob is satisfied, Alice is safe

m But how safe is she?

m Heartbleed was a painful reminder:
» Using TLS is not enough
» Vulnerabilities in TLS stack can lead to private key
leakage
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|Heartbleed
|Heartbleed

Heartbleed

m Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

SSL/TLS Client
Apache Worker

sums ()
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|Heartbleed
|Heartbleed

Heartbleed

m Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

m Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read

SSL/TLS Client
Apache Worker

Read Apache Memory |« --| SSLATLS - -]
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|Heartbleed
|Heartbleed

Heartbleed

m Heartbleed is a security bug that affects an
implementation of a TLS protocol extension
m Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read
m Memory from the server process can be retrieved
» Application data
» TLS symetric session keys
» Private key of the server
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|Heartbleed

|Consequences

Consequences

m Compromission of private keys
» MiTM of the server
» Decryption of past TLS sessions

3/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Heartbleed

|Consequences

Consequences

m Compromission of private keys
» MiTM of the server
» Decryption of past TLS sessions

m Massive renewal of enterprise and private credentials
» Costly (think thousands of X.509 certificates to renew)
» Painful

|
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|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

4/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

m Keys must be usable without needing to know their
values

value

Q
Encrypt (SECRET ,

Secure area
- Cryptography

@24 (@6G.

4/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

m Keys must be usable without needing to know their
values

m Keys are refered to using handles (pointers)

handle
Encrypt (SECRET, O )

Secure area :
- Cryptography
- Secure storage

X509 %
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|Current countermeasures
|Security API

Did You Say Security API 7

m A security API is a programming interface which allows
cryptographic operations and key management

m Keys must be usable without needing to know their
values

m Keys are refered to using handles (pointers)

Secure area : Decrypt (aze'@4g.-» O)
- Cryptography
- Secure storage

SECRET
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|Current countermeasures
| PKCS#11

The PKCS#11 security API

m PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS
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The PKCS#11 security API

m PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS
» RSA labs provides pkcs11.h
» Manufacturers provide a shared library (¢‘middleware’’)
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|Current countermeasures
| PKCS#11

The PKCS#11 security API

m PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS
» RSA labs provides pkcs11.h
» Manufacturers provide a shared library (¢‘middleware’’)

m The shared library handles the hardware:
» Sends APDU sequences to smartcards (via USB, ...)
» Sends network packets to network HSMs
» Sends frames to USB dongles
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|Current countermeasures

|Use case example
Scenario: a TLS enabled HT'TP web server

m Compatible web servers can be configured to use PKCS#11

Apache Process
Apache Worker
PKCS#11 Interface

aoeds Auowsy ayoedy

6/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Current countermeasures

|Use case example

Scenario: a TLS enabled HT'TP web server

m Compatible web servers can be configured to use PKCS#11

m Hardware (certified) devices offer:

» High degree of confidence
» Inconvenient in production environment and costly

Apache Process
Apache Worker

mod_ nss.so

PKCS#11 Interface

PKCS#11 Interface
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|Current countermeasures

|Use case example
Scenario: a TLS enabled HTTP web server

m Compatible web servers can be configured to use PKCS#11
m Hardware (certified) devices offer:

» High degree of confidence
» Inconvenient in production environment and costly

m Software PKCS#11 devices offer:

» Convenient to deploy and some are open-source
» Keys are mapped in memory

Apache Process
Apache Worker

mod_ nss.so

PKCS#11 Interface

PKCS#11 Interface
libsofthsm.so
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|Current countermeasures

[Mini wrap-up

Let’s sum up

Cost | Security

HSM X v v/ =
IP.addr:
192.168.1.10

NetHSM
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|Current countermeasures
[Mini wrap-up

Let’s sum up

cost | security | Perfornance |

HSM X v v =
IP.addr:
192.168.1.10
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|Current countermeasures
[Mini wrap-up

Let’s sum up

| cost | security | Perfornance |
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|Caml Crush
|Concepts and Architecture

PKCS+#11 API through a Proxy

m Can we use a low-cost solution such as SoftHSM?

m What if we leverage process isolation?
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|Caml Crush
|Concepts and Architecture

PKCS+#11 API through a Proxy

m Can we use a low-cost solution such as SoftHSM?
m What if we leverage process isolation?

m Caml Crush is a PKCS#11 filtering proxy

PKCS#11 interface «—-[ Filtering proxy ]«—- PKCS#11 interface

Cryptographic Cryptoki
resource application

APACHE
8/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Caml Crush
|Concepts and Architecture

PKCS+#11 API through a Proxy

PKCS#11 interface

PKCS#11 interface

Cryptoki M
libsofthsm.so icati
1bsotthsm.s application APACHE
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|Caml Crush

|Concepts and Architecture

PKCS+#11 API through a Proxy

Caml Crush Process

PKCS#11 proxy
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|Deployment

|Caml Crush

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token
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|Caml Crush

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token

m Private key leak is avoided
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|Caml Crush
|Deployment

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token
m Private key leak is avoided

m Minimal 0S-level hardening required
» ‘‘Dedicated uid/gid’’ for Apache and proxy

Caml Crush Process
RPC layer - Apache Worker

PKCS#11
T
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|Deployment

|Caml Crush

Scenario: a TLS enabled HT'TP web server

m Caml Crush combined with a software PKCS#11 token

m Private key leak is avoided

m Minimal 0S-level hardening required

» ‘‘Dedicated uid/gid’’ for Apache and proxy
» Coherent file permission on object database
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Caml Crush Process
RPC layer ---
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Filter

PKCS#11 Interface

PKCS#11 Interface
libsofthsm.so
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|Caml Crush
|Deployment

Why use Caml Crush?

m I heard about other PKCS#11 proxies, why use yours ?
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|Caml Crush
|Deployment

Why use Caml Crush?

m I heard about other PKCS#11 proxies, why use yours ?
m Caml Crush is security oriented

OCaml programming language

Able to sandbox itself

Blocks known cryptographic attacks
Restricts cryptographic mechanisms
Object filtering capabilities
Token read-only mode

vV vV vV vV VY VY
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|Caml Crush
|Deployment

Beyond Heartbleed

m Other threats?
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|Caml Crush
|Deployment

Beyond Heartbleed

Other threats?

m Think remote code execution

» Process memory inspection (we’ve seen and addressed
that)

» Use the PKCS#11 stack as an oracle
» Could lead to private key leak

m Caml Crush filtering engine protects from such attacks

Other deployments
» Transform local cryptographic tokens (PCI HSM,
smartcard) into network devices
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|Caml Crush

|Performance

Performances

m No overhead when using plain SoftHSM

response time (ms)
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|Caml Crush

|Performance

Performances

m Reasonable overhead with Caml Crush
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|Caml Crush
|Server compatibility

Server compatibility

m Web server:
» Apache (mod_nss', mod_gnutls?)

» NGINX (since 1.7.9%)

m Other server applications:
» Ex: LDAPS for OpenLDAP
» Should work transparently if linked to GnuTLS

'PFS is not supported
’requires a patch from Nikos
3using OpenSC engine_pkcs11
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|Conclusion

Conclusion

m Caml Crush has benefits applicable to TLS stacks

m Caml Crush is also useful in a variety of other
scenarios

® Soon in Debian Sid

m Caml Crush is open source:

» https://github.com/ANSSI-FR/caml-crush
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|Conclusion

Conclusion

m Caml Crush has benefits applicable to TLS stacks

m Caml Crush is also useful in a variety of other
scenarios

® Soon in Debian Sid

m Caml Crush is open source:

» https://github.com/ANSSI-FR/caml-crush

Thou Shalt Ast Questions!
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|Compatibility

Compatibility Matrix

C client 0Caml client | pkcsliproxyd | SSL/TLS
Unix | TCP | Unix TCP Unix TCP

Linux

FreeBSD

Mac 0S X X

Win32 (native) X X X X

Win32 (cygwin)

m Caml Crush works on Little/Big Endian platforms (even
with hybrid architectures between client and server)
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