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Context

Bob hosts a service, wants Alice to access it safely:
I Hence, TLS is deployed:

* Bob is authenticated
* Data integrity and confidentiality

I Bob is satisfied, Alice is safe

But how safe is she?

Heartbleed was a painful reminder:
I Using TLS is not enough
I Vulnerabilities in TLS stack can lead to private key

leakage
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|Heartbleed |Consequences

Heartbleed
Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read
Memory from the server process can be retrieved

I Application data
I TLS symetric session keys
I Private key of the server

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache Worker

mod_ssl.so

SSL/TLS Client

Crypto Operations

SSL/TLS

SSL/TLS

Apache
Memory

Space

Read Apache Memory



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Heartbleed
Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read

Memory from the server process can be retrieved
I Application data
I TLS symetric session keys
I Private key of the server

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache Worker

mod_ssl.so

SSL/TLS Client

Crypto Operations

SSL/TLS

SSL/TLS

Apache
Memory

Space

Read Apache Memory



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Heartbleed
Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read
Memory from the server process can be retrieved

I Application data
I TLS symetric session keys
I Private key of the server

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache Worker

mod_ssl.so

SSL/TLS Client

Crypto Operations

SSL/TLS

SSL/TLS

Apache
Memory

Space

Read Apache Memory



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Consequences
Compromission of private keys

I MiTM of the server
I Decryption of past TLS sessions

Massive renewal of enterprise and private credentials
I Costly (think thousands of X.509 certificates to renew)
I Painful
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|Security API |PKCS#11 |Use case example |Mini wrap-up

Did You Say Security API ?

A security API is a programming interface which allows
cryptographic operations and key management

Keys must be usable without needing to know their
values

Keys are refered to using handles (pointers)
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The PKCS#11 security API
PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS

I RSA labs provides pkcs11.h
I Manufacturers provide a shared library (‘‘middleware’’)

The shared library handles the hardware:
I Sends APDU sequences to smartcards (via USB, ...)
I Sends network packets to network HSMs
I Sends frames to USB dongles
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|Security API |PKCS#11 |Use case example |Mini wrap-up

Scenario: a TLS enabled HTTP web server
Compatible web servers can be configured to use PKCS#11

Hardware (certified) devices offer:
I High degree of confidence
I Inconvenient in production environment and costly

Software PKCS#11 devices offer:
I Convenient to deploy and some are open-source
I Keys are mapped in memory
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Let’s sum up
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|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy

Can we use a low-cost solution such as SoftHSM?

What if we leverage process isolation?

Caml Crush is a PKCS#11 filtering proxy

PKCS#11 interface PKCS#11 interface

Cryptographic
resource

Cryptoki
application

Filtering proxy

8/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy

Can we use a low-cost solution such as SoftHSM?

What if we leverage process isolation?

Caml Crush is a PKCS#11 filtering proxy

PKCS#11 interface PKCS#11 interface

Cryptographic
resource

Cryptoki
application

Filtering proxy

8/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy
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Scenario: a TLS enabled HTTP web server

Caml Crush combined with a software PKCS#11 token

Private key leak is avoided

Minimal OS-level hardening required
I ‘‘Dedicated uid/gid’’ for Apache and proxy
I Coherent file permission on object database
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Why use Caml Crush?

I heard about other PKCS#11 proxies, why use yours ?

Caml Crush is security oriented

I OCaml programming language
I Able to sandbox itself
I Blocks known cryptographic attacks
I Restricts cryptographic mechanisms
I Object filtering capabilities
I Token read-only mode
I . . .
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Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015



|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Performances

No overhead when using plain SoftHSM
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Performances

Reasonable overhead with Caml Crush
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Server compatibility

Web server:
I Apache (mod_nss1, mod_gnutls2)
I NGINX (since 1.7.93)

Other server applications:
I Ex: LDAPS for OpenLDAP
I Should work transparently if linked to GnuTLS

1PFS is not supported
2requires a patch from Nikos
3using OpenSC engine_pkcs11
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Conclusion

Caml Crush has benefits applicable to TLS stacks

Caml Crush is also useful in a variety of other
scenarios

Soon in Debian Sid

Caml Crush is open source:

I https://github.com/ANSSI-FR/caml-crush
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|Compatibility

Compatibility Matrix

C client OCaml client pkcs11proxyd SSL/TLS
Unix TCP Unix TCP Unix TCP

Linux 3 3 3 3 3 3 3

FreeBSD 3 3 3 3 3 3 3

Mac OS X 7 3 3 3 3 3 3

Win32 (native) 7 3 7 7 7 7

Win32 (cygwin)

Caml Crush works on Little/Big Endian platforms (even
with hybrid architectures between client and server)
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