
Thou Shalt Use

Strong Passwords

Thou Shalt Harden

Your OS

Thou Shalt

Separate Privileges

Thou Shalt Keep

Software Updated

Thou Shalt Use

Strong Cryptography

Thou Shalt Separate

Admin/User Network

Thou Shalt Check

for Malware

Thou Shalt Revoke

Compromised Keys

Thou Shalt Kill

Zombies

Thou Shalt not

Leak your Keys

F
O
S
D
E
M

 '1
5

Thou Shalt not Leak your Keys:
Practical Key Privilege
Separation Using Caml Crush

R. BENADJILA
T. CALDERON

M. DAUBIGNARD

French
Network and
Information

Security
Agency

February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

Context

Bob hosts a service, wants Alice to access it safely:
I Hence, TLS is deployed:

* Bob is authenticated
* Data integrity and confidentiality

I Bob is satisfied, Alice is safe

But how safe is she?

Heartbleed was a painful reminder:
I Using TLS is not enough
I Vulnerabilities in TLS stack can lead to private key

leakage

1/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

Context

Bob hosts a service, wants Alice to access it safely:
I Hence, TLS is deployed:

* Bob is authenticated
* Data integrity and confidentiality

I Bob is satisfied, Alice is safe

But how safe is she?

Heartbleed was a painful reminder:
I Using TLS is not enough
I Vulnerabilities in TLS stack can lead to private key

leakage

1/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

Context

Bob hosts a service, wants Alice to access it safely:
I Hence, TLS is deployed:

* Bob is authenticated
* Data integrity and confidentiality

I Bob is satisfied, Alice is safe

But how safe is she?

Heartbleed was a painful reminder:
I Using TLS is not enough
I Vulnerabilities in TLS stack can lead to private key

leakage

1/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Heartbleed
Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read
Memory from the server process can be retrieved

I Application data
I TLS symetric session keys
I Private key of the server

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache Worker

mod_ssl.so

SSL/TLS Client

Crypto Operations

SSL/TLS

SSL/TLS

Apache
Memory

Space

Read Apache Memory

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Heartbleed
Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read

Memory from the server process can be retrieved
I Application data
I TLS symetric session keys
I Private key of the server

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache Worker

mod_ssl.so

SSL/TLS Client

Crypto Operations

SSL/TLS

SSL/TLS

Apache
Memory

Space

Read Apache Memory

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Heartbleed
Heartbleed is a security bug that affects an
implementation of a TLS protocol extension

Simply put: using a ping feature results in a buffer
over-read allowing more data than expected to be read
Memory from the server process can be retrieved

I Application data
I TLS symetric session keys
I Private key of the server

2/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache Worker

mod_ssl.so

SSL/TLS Client

Crypto Operations

SSL/TLS

SSL/TLS

Apache
Memory

Space

Read Apache Memory

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Consequences
Compromission of private keys

I MiTM of the server
I Decryption of past TLS sessions

Massive renewal of enterprise and private credentials
I Costly (think thousands of X.509 certificates to renew)
I Painful

3/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Heartbleed |Consequences

Consequences
Compromission of private keys

I MiTM of the server
I Decryption of past TLS sessions

Massive renewal of enterprise and private credentials
I Costly (think thousands of X.509 certificates to renew)
I Painful

3/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Did You Say Security API ?

A security API is a programming interface which allows
cryptographic operations and key management

Keys must be usable without needing to know their
values

Keys are refered to using handles (pointers)

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

Secure area :
- Cryptography

- Secure storage

X509

Encrypt(SECRET ,)

value

Encrypt(SECRET ,)

handle

dZs"@&q...

Secure area :
- Cryptography
- Secure storage

X509

Decrypt(dZs"@&q...,)

SECRET

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Did You Say Security API ?

A security API is a programming interface which allows
cryptographic operations and key management

Keys must be usable without needing to know their
values

Keys are refered to using handles (pointers)

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

Secure area :
- Cryptography

- Secure storage

X509

Encrypt(SECRET ,)

value

Encrypt(SECRET ,)

handle

dZs"@&q...

Secure area :
- Cryptography
- Secure storage

X509

Decrypt(dZs"@&q...,)

SECRET

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Did You Say Security API ?

A security API is a programming interface which allows
cryptographic operations and key management

Keys must be usable without needing to know their
values

Keys are refered to using handles (pointers)

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

Secure area :
- Cryptography
- Secure storage

X509

Encrypt(SECRET ,)

value

Encrypt(SECRET ,)

handle

dZs"@&q...

Secure area :
- Cryptography
- Secure storage

X509

Decrypt(dZs"@&q...,)

SECRET

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Did You Say Security API ?

A security API is a programming interface which allows
cryptographic operations and key management

Keys must be usable without needing to know their
values

Keys are refered to using handles (pointers)

4/15 Thou Shalt not Leak your Keys - February 1st, 2015

Secure area :
- Cryptography

- Secure storage

X509

Encrypt(SECRET ,)

value

Encrypt(SECRET ,)

handle

dZs"@&q...

Secure area :
- Cryptography
- Secure storage

X509

Decrypt(dZs"@&q...,)

SECRET

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

The PKCS#11 security API
PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS

I RSA labs provides pkcs11.h
I Manufacturers provide a shared library (‘‘middleware’’)

The shared library handles the hardware:
I Sends APDU sequences to smartcards (via USB, ...)
I Sends network packets to network HSMs
I Sends frames to USB dongles

5/15 Thou Shalt not Leak your Keys - February 1st, 2015

Trust
areaPKCS#11

clients

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

P
K
C
S#

11
A
P
I/

pk
cs

11
.h

P
K
C
S#

11
m

id
dl

ew
ar

e
(d

riv
er

)

AP
DU

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

The PKCS#11 security API
PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS

I RSA labs provides pkcs11.h
I Manufacturers provide a shared library (‘‘middleware’’)

The shared library handles the hardware:
I Sends APDU sequences to smartcards (via USB, ...)
I Sends network packets to network HSMs
I Sends frames to USB dongles

5/15 Thou Shalt not Leak your Keys - February 1st, 2015

Trust
areaPKCS#11

clients

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

P
K
C
S#

11
A
P
I/

pk
cs

11
.h

P
K
C
S#

11
m

id
dl

ew
ar

e
(d

riv
er

)

AP
DU

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

The PKCS#11 security API
PKCS#11 = subset of Public Key Cryptography Standards
initially developed by RSA labs, transfered to OASIS

I RSA labs provides pkcs11.h
I Manufacturers provide a shared library (‘‘middleware’’)

The shared library handles the hardware:
I Sends APDU sequences to smartcards (via USB, ...)
I Sends network packets to network HSMs
I Sends frames to USB dongles

5/15 Thou Shalt not Leak your Keys - February 1st, 2015

Trust
areaPKCS#11

clients

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

P
K
C
S#

11
A
P
I/

pk
cs

11
.h

P
K
C
S#

11
m

id
dl

ew
ar

e
(d

riv
er

)

AP
DU

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Scenario: a TLS enabled HTTP web server
Compatible web servers can be configured to use PKCS#11

Hardware (certified) devices offer:
I High degree of confidence
I Inconvenient in production environment and costly

Software PKCS#11 devices offer:
I Convenient to deploy and some are open-source
I Keys are mapped in memory

6/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process
Apache

Memory
Space

Apache Worker

mod_nss.so

PKCS#11 Interface

libsofthsm.so

PKCS#11 Interface

HS
M_

DB

middleware.so

PKCS#11 Interface

TO
KE

N

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Scenario: a TLS enabled HTTP web server
Compatible web servers can be configured to use PKCS#11

Hardware (certified) devices offer:
I High degree of confidence
I Inconvenient in production environment and costly

Software PKCS#11 devices offer:
I Convenient to deploy and some are open-source
I Keys are mapped in memory

6/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process
Apache

Memory
Space

Apache Worker

mod_nss.so

PKCS#11 Interface

libsofthsm.so

PKCS#11 Interface

HS
M_

DB

middleware.so

PKCS#11 Interface

TO
KE

N

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Scenario: a TLS enabled HTTP web server
Compatible web servers can be configured to use PKCS#11

Hardware (certified) devices offer:
I High degree of confidence
I Inconvenient in production environment and costly

Software PKCS#11 devices offer:
I Convenient to deploy and some are open-source
I Keys are mapped in memory

6/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process
Apache

Memory
Space

Apache Worker

mod_nss.so

PKCS#11 Interface

libsofthsm.so

PKCS#11 Interface

HS
M_

DB

middleware.so

PKCS#11 Interface

TO
KE

N

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Let’s sum up

7/15 Thou Shalt not Leak your Keys - February 1st, 2015

Cost Security Performance
HSM 7 3 3

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Let’s sum up

7/15 Thou Shalt not Leak your Keys - February 1st, 2015

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

Cost Security Performance
HSM 7 3 3

Smartcards 3 3 7

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Let’s sum up

7/15 Thou Shalt not Leak your Keys - February 1st, 2015

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

PKCS#11 Interface

libsofthsm.so

Cost Security Performance
HSM 7 3 3

Smartcards 3 3 7

Software Tokens 3 7 3

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Security API |PKCS#11 |Use case example |Mini wrap-up

Let’s sum up

7/15 Thou Shalt not Leak your Keys - February 1st, 2015

NetHSM
eth0eth1

Power
HSM status:
OK!
IP addr:
192.168.1.10

PKCS#11 Interface

Caml Crush

libsofthsm.so

Cost Security Performance
HSM 7 3 3

Smartcards 3 3 7

Software Tokens 3 3 3

with Caml Crush

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy

Can we use a low-cost solution such as SoftHSM?

What if we leverage process isolation?

Caml Crush is a PKCS#11 filtering proxy

PKCS#11 interface PKCS#11 interface

Cryptographic
resource

Cryptoki
application

Filtering proxy

8/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy

Can we use a low-cost solution such as SoftHSM?

What if we leverage process isolation?

Caml Crush is a PKCS#11 filtering proxy

PKCS#11 interface PKCS#11 interface

Cryptographic
resource

Cryptoki
application

Filtering proxy

8/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy

9/15 Thou Shalt not Leak your Keys - February 1st, 2015

Tr
us

te
d

ar
ea

Caml Crush Process Apache Process

PKCS#11 proxy

RPC layerPKCS#11
Filter

RPC layer

Client libraryTCP/UNIX socket

(Optional TLS)
socket

PKCS#11 interface

PKCS#11 interface

libsofthsm.so
Cryptoki

application

HS
M_

DB

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

PKCS#11 API through a Proxy

9/15 Thou Shalt not Leak your Keys - February 1st, 2015

Tr
us

te
d

ar
ea

Caml Crush Process Apache Process

PKCS#11 proxy

RPC layerPKCS#11
Filter

RPC layer

Client libraryTCP/UNIX socket

(Optional TLS)
socket

PKCS#11 interface

PKCS#11 interface

libsofthsm.so
Cryptoki

application

HS
M_

DB

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Scenario: a TLS enabled HTTP web server

Caml Crush combined with a software PKCS#11 token

Private key leak is avoided

Minimal OS-level hardening required
I ‘‘Dedicated uid/gid’’ for Apache and proxy
I Coherent file permission on object database

10/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache
Memory

Space

Apache Process

Apache Worker

mod_nss.so

PKCS#11 Interface

libcamlcrush.so

PKCS#11 Interface

RPC layer

Caml Crush Process

Caml
Crush

Memory
Space

Caml Crush Process

RPC layer

PKCS#11
Filter

PKCS#11 Interface

PKCS#11 Interface

libsofthsm.so

HS
M_

DB

UNIX socket

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Scenario: a TLS enabled HTTP web server

Caml Crush combined with a software PKCS#11 token

Private key leak is avoided

Minimal OS-level hardening required
I ‘‘Dedicated uid/gid’’ for Apache and proxy
I Coherent file permission on object database

10/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache
Memory

Space

Apache Process

Apache Worker

mod_nss.so

PKCS#11 Interface

libcamlcrush.so

PKCS#11 Interface

RPC layer

Caml Crush Process

Caml
Crush

Memory
Space

Caml Crush Process

RPC layer

PKCS#11
Filter

PKCS#11 Interface

PKCS#11 Interface

libsofthsm.so

HS
M_

DB

UNIX socket

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Scenario: a TLS enabled HTTP web server

Caml Crush combined with a software PKCS#11 token

Private key leak is avoided

Minimal OS-level hardening required
I ‘‘Dedicated uid/gid’’ for Apache and proxy

I Coherent file permission on object database

10/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache
Memory

Space

Apache Process

Apache Worker

mod_nss.so

PKCS#11 Interface

libcamlcrush.so

PKCS#11 Interface

RPC layer

Caml Crush Process

Caml
Crush

Memory
Space

Caml Crush Process

RPC layer

PKCS#11
Filter

PKCS#11 Interface

PKCS#11 Interface

libsofthsm.so

HS
M_

DB

UNIX socket

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Scenario: a TLS enabled HTTP web server

Caml Crush combined with a software PKCS#11 token

Private key leak is avoided

Minimal OS-level hardening required
I ‘‘Dedicated uid/gid’’ for Apache and proxy
I Coherent file permission on object database

10/15 Thou Shalt not Leak your Keys - February 1st, 2015

Apache Process

Apache
Memory

Space

Apache Process

Apache Worker

mod_nss.so

PKCS#11 Interface

libcamlcrush.so

PKCS#11 Interface

RPC layer

Caml Crush Process

Caml
Crush

Memory
Space

Caml Crush Process

RPC layer

PKCS#11
Filter

PKCS#11 Interface

PKCS#11 Interface

libsofthsm.so

HS
M_

DB

UNIX socket

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Why use Caml Crush?

I heard about other PKCS#11 proxies, why use yours ?

Caml Crush is security oriented

I OCaml programming language
I Able to sandbox itself
I Blocks known cryptographic attacks
I Restricts cryptographic mechanisms
I Object filtering capabilities
I Token read-only mode
I . . .

11/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Why use Caml Crush?

I heard about other PKCS#11 proxies, why use yours ?

Caml Crush is security oriented

I OCaml programming language
I Able to sandbox itself
I Blocks known cryptographic attacks
I Restricts cryptographic mechanisms
I Object filtering capabilities
I Token read-only mode
I . . .

11/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Why use Caml Crush?

I heard about other PKCS#11 proxies, why use yours ?

Caml Crush is security oriented

I OCaml programming language
I Able to sandbox itself
I Blocks known cryptographic attacks
I Restricts cryptographic mechanisms
I Object filtering capabilities
I Token read-only mode
I . . .

11/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Beyond Heartbleed

Other threats?

Think remote code execution

I Process memory inspection (we’ve seen and addressed
that)

I Use the PKCS#11 stack as an oracle
I Could lead to private key leak

Caml Crush filtering engine protects from such attacks

Other deployments
I Transform local cryptographic tokens (PCI HSM,

smartcard) into network devices
I . . .

12/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Performances

No overhead when using plain SoftHSM

13/15 Thou Shalt not Leak your Keys - February 1st, 2015

 5

 6

 7

 8

 9

 10

 11

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

re
sp

o
n

se
 t

im
e

(m
s)

number of requests

ab -n 100000 -c 10

NSS raw
NSS P11 SoftHSM

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Performances

Reasonable overhead with Caml Crush

13/15 Thou Shalt not Leak your Keys - February 1st, 2015

5

6

7

8

9

10

11

12

13

14

15

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

re
sp

o
n

se
 t

im
e

(m
s)

number of requests

ab -n 100000 -c 10

NSS raw
NSS P11 SoftHSM

NSS Caml Crush P11

~ +3ms

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Concepts and Architecture |Deployment |Performance |Server compatibility

Server compatibility

Web server:
I Apache (mod_nss1, mod_gnutls2)
I NGINX (since 1.7.93)

Other server applications:
I Ex: LDAPS for OpenLDAP
I Should work transparently if linked to GnuTLS

1PFS is not supported
2requires a patch from Nikos
3using OpenSC engine_pkcs11

14/15 Thou Shalt not Leak your Keys - February 1st, 2015

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

Conclusion

Caml Crush has benefits applicable to TLS stacks

Caml Crush is also useful in a variety of other
scenarios

Soon in Debian Sid

Caml Crush is open source:

I https://github.com/ANSSI-FR/caml-crush

15/15 Thou Shalt not Leak your Keys - February 1st, 2015

Thou Shalt Ask Questions!

https://github.com/ANSSI-FR/caml-crush

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

Conclusion

Caml Crush has benefits applicable to TLS stacks

Caml Crush is also useful in a variety of other
scenarios

Soon in Debian Sid

Caml Crush is open source:

I https://github.com/ANSSI-FR/caml-crush

15/15 Thou Shalt not Leak your Keys - February 1st, 2015

Thou Shalt Ask Questions!

https://github.com/ANSSI-FR/caml-crush

|Context |Heartbleed |Current countermeasures |Caml Crush |Conclusion

|Compatibility

Compatibility Matrix

C client OCaml client pkcs11proxyd SSL/TLS
Unix TCP Unix TCP Unix TCP

Linux 3 3 3 3 3 3 3

FreeBSD 3 3 3 3 3 3 3

Mac OS X 7 3 3 3 3 3 3

Win32 (native) 7 3 7 7 7 7

Win32 (cygwin)

Caml Crush works on Little/Big Endian platforms (even
with hybrid architectures between client and server)

16/15 Thou Shalt not Leak your Keys - February 1st, 2015

	Context
	Heartbleed
	Heartbleed
	Consequences

	Current countermeasures
	Security API
	PKCS#11
	Use case example
	Mini wrap-up

	Caml Crush
	Concepts and Architecture
	Deployment
	Performance
	Server compatibility

	Conclusion

