
FOSDEM 2015

Florian Lautenschlager

31. January 2015

FOSDEM 2015, Brussels

Apache Solr as a compressed, scalable,

and high performance time series database

68.000.000.000* time correlated data objects.

How to store such amount of data on your laptop computer and
retrieve any point within a few milliseconds?

2

* or collect and store 680 metrics x 500 processes x 200 hosts over 3 years

This approach does not work well.

3

■ Store data objects in a classical RDBMS

■ Reasons for us:

■ Slow import of data objects

■ Hugh amount of hard drive space

■ Slow retrieval of time series

■ Limited scalability due to RDBMS

!68.000.000.000!

Measurement Series

Name

Start

End

Time Series

Start

End

Data Object

Timestamp

Value

Metric

Meta Data

Host

Process

…

* *

*

*

Name

4

Approach felt like …

Not sure

whether bad

driver or

wrong car!?

Nathan Wong,http://upload.wikimedia.org/wikipedia/commons/e/e7/Rowan_Atkinson_on_a_Mini_at_Goodwood_Circuit_in_2009.jpg

Changed the car and the driver… and it works!

5

■ The key ideas to enable the efficient storage of billion data objects:

■ Split data objects into chunks of the same size

■ Compress these chunks to reduce the data volume

■ Store the compressed chunks and the metadata in one Solr document

■ Reason for success:

■ 37 GB disk usage for 68 billion data objects

■ Fast retrieval of data objects within a few milliseconds

■ Searching on metadata

■ Everything runs on a laptop computer

■ … and many more!

Time Series

Start

End

Data []

Size

PointType

Meta Data []

1 Million

!68.000!

6

That‘s all.
No secrets, nothing special and nothing more to say ;-)

Hard stuff - Time for beer!

The agenda for the rest of the talk.

7

■ Time Series Database - What’s that? Definitions and typical features.

■ Why did we choose Apache Solr and are there alternatives?

■ How to use Apache Solr to store billions of time series data objects.

Time Series Database: What’s that?

8

■ Definition 1: “A data object d is a 2-tuple of {timestamp, value}, where

the value could be any kind of object.”

■ Definition 2: “A time series T is an arbitrary list of chronological

ordered data objects of one value type”

■ Definition 3: “A chunk C is a chronological ordered part of a time

series.”

■ Definition 3: “A time series database TSDB is a specialized database

for storing and retrieving time series in an efficient and optimized

way”.

d

{t,v}

1
T

{d1,d2}

T
CT

T1

C1,1

C1,2

TSDB
T3C2,2

T1 C2,1

A few typical features of a time series database

9

■ Data management

■ Round Robin Storages

■ Down-sample old time series

■ Compression

■ Arbitrary amount of Metadata

■ For time series (Country, Host, Customer, …)

■ For data object (Scale, Unit, Type)

■ Performance and Operational

■ Rare updates, Inserts are additive

■ Fast inserts and retrievals

■ Distributed and efficient per node

■ No need of ACID, but consistency

■ Time series language and API

■ Statistics: Aggregation (min, max, median), …

■ Transformations: Time windows, time shifting,

resampling, ..

Check out: A good post about the requirements of a time series: http://www.xaprb.com/blog/2014/06/08/time-series-database-requirements/

http://www.xaprb.com/blog/2014/06/08/time-series-database-requirements

10

That’s what we need the time series database for.

Videos/EKG.wmv
Videos/EKG.wmv

11

Some time series databases out there.
■RRDTool - http://oss.oetiker.ch/rrdtool/

■Mainly used in traditional monitoring systems

■InfluxDB - http://influxdb.com/

■The new kid on the block. Based on LevelDB

■OpenTSDB - http://opentsdb.net/

■Is a scalable time series database and runs on Hadoop and Hbase

■SciDB - http://www.scidb.org/

■Is computational DBMS and is programmable from R & Python

■… many more

http://oss.oetiker.ch/rrdtool/
http://influxdb.com/
http://opentsdb.net/
http://www.scidb.org/

“Ey, there are so many time series databases out there? Why did
you create a new solution? Too much time?”

12

Our Requirements

■ A fast write and query performance

■ Run the database on a laptop computer

■ Minimal data volume for stored data objects

■ Storing arbitrary metadata

■ A Query API for searching on all information

■ Large community and an active development

That delivers Apache Solr

■ Based on Lucene which is really fast

■ Runs embedded or as standalone server

■ Lucene has a build in compression

■ Schema or schemaless

■ Solr Query Language

■ Lucidworks and an Apache project

“Our tool has been around for a good few years, and in the beginning there was no time series

database that complies our requirements. And there isn’t one today!”
Alternatives?

In our opinion the best

alternative is ElasticSearch.

Solr and ElasticSearch are both

based on Lucene.

Solr has a powerful query language that enriches the Lucene
query language.

13

■ An example for a complex query:

■ A few powerful Solr query language features

■ Wildcards: host:server?1 (single) and host:server* (multiple characters)

■ Boolean operators: conference:FOSDEM AND year:(2015 || 2016) NOT talk:”Time series in RDBMS”

■ Range queries: zipCode: [123 TO *]

■ Date-Math: conferenceDate:[* TO NOW], conferenceDate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]

■ Boosting of terms: “I am a four times boosted search term”^4, “I am just normal search term”

■ … -> https://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

host:h* AND metric:*memory*used AND –start:[NOW – 3 DAYS] OR -end:[NOW + 3 DAYS]

https://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
Videos/QueryLanguageNew.wmv

QueryResponse response = solr.query(query);

FacetField field = response.getFacetField(SolrSchema.IDX_METRIC);

List<FacetField.Count> count = field.getValues();

if (count == null) {return Stream.empty();}

return count.stream().filter(c ->

c.getCount() != 0).map(c -> new Metric(c.getName().substring(1),c.getCount()));

Fast navigation over time series metadata is a must-have when
dealing with billions of data objects.

14

■ Solr has a powerful query language which allows complex wildcard expressions

■ The faceting functionality allows a dynamic drilldown navigation.

■ Faceting is the arrangement of search results into categories (Facets)

based on indexed terms

series:40-Loops-Optimzation AND host:server01

AND process:* AND type:jmx-collector

Videos/FacetNavigation.wmv
Videos/FacetNavigation.wmv
Videos/QueryLanguage.wmv

15

Many slides later…

…we are continuing from slide five.

First: Do not store data object by data object by data object by...

16

■ Do not store 68 billion single documents. Do instead store 1.000.000 documents each

containing 68000 data objects as BLOB.

"docs": [

{

"size": 68000,

"metric": "$HeapMemory.Usage",

"dataPointType": "METRIC",

"data": [BLOB],

"start": 1421855119981,

"samplingRate": 1,

"end": 1421923118981,

"samplingUnit": "SECONDS",

"id": "27feed09-4728-…"

},

…

]

:= Compressed {Value, Value}

:= { (Date, Value), (Date, Value) …)}

:= Compressed { (Date, Value), (Date, Value) …)}

Strategy 1: Raw data objects

Strategy 2: Compressed data objects

Strategy 3: Semantic-compressed data objects

Don’t store needless things. Two compression approaches.

17

■ Strategy 2: Basic compression with GZIP, lz4, …

■ Works for every data object and the compression rate is higher, if the document has more data objects

■ Strategy 3: Semantic compression by only storing the algorithm to create the timestamp

■ Works only on time series with a fixed time interval between the data objects (Sampling, …)

• ID

• Meta information

• Points:{

<Timestamp, Value>

<Timestamp, Value>

}

• ID

• Meta information

• Points:{compress(

<Timestamp, Value>

<Timestamp, Value>

)}

• Sampling rate

• Time unit

• First Date

Compression

Semantic Compression

:= Compressed {Value, Value} + First Date + Sampling Rate + Time Unit

:= Compressed { (Date, Value), (Date, Value) …)}

Second: Correct handling of continuous time series in a
document oriented storage.

18

Time

V
a
lu

e

Apache Solr

Continuous time series Time series chucks Compression techniques Storage

CompressionTransformation Storing

Query workflow

Storage workflow

Solr allows server-side decompression and aggregation by
implementing custom function queries.

19

■ Why should we do that? Send the query to the data!

■ Aggregation should be done close to the data to avoid unnecessary overhead for serialization,

transportation and so on.

■ A function query enables you to create server-side dynamic query-depending results and use it in the

query itself, sort expressions, as a result field, …

■ Imagine you want to check the maximum of all time series in our storage

■ And now get your own impression.

http://localhost:8983/core/select?q=*:*&fl=max(decompress(data))

Our ValueSourceParser

68.400.000 data objects in 1000 documents and each has 86400 Points.

Videos/FunctionQueryNew.wmv
Videos/FunctionQueryNew.wmv

Data Objects

Q
u

e
ry

 T
im

e
 /
 m

s

S
to

ra
g

e
 A

m
o

u
n

t
/
M

B

68 Thousand 6.84e+5 6.84e+6 68 Million 6.84e+8 6.84e+9 68 Billion

20

22

24

26

28

30

0.39

3.89

38.91

388.00

3888.09

37989.18

Third: Enjoy the outstanding query and storage results on your
laptop computer.

20

Logarithmic scale for the storage amount

Time for query one data object

Our present for the community:
The storage component including the Query-API
(currently nameless, work in progress)

21

■ We are planning to publish the Query-API and its storage component on GitHub.

■ Interested? Give me a ping: florian.lautenschlager@qaware.de

■ Excessive use of Java 8

Stream API

■ Time Shift, Fourier

Transformation, Time Windows

and many more

■ Groovy DSL based on the

fluent API (concept)

■ Optional R-Integration for

higher statistics Questions?

QueryMetricContext query = new QueryMetricContext.Builder()

.connection(connection)

.metric("*fosdem*visitor*statistics*delighted.rate")

.build();

Stream<TimeSeries> fosdemDelightedStats = new AnalysisSolrImpl(query)

.filter(0.5, FilterStrategy.LOWER_EQUALS)//Delighted visitors

.timeFrame(1, ChronoUnit.DAYS)//on each day

.timeShift(1, ChronoUnit.YEARS)//and next year

.result();

