
Apache Lucene 5
New Features and Improvements
for Apache Solr and Elasticsearch

Uwe Schindler
Apache Software Foundation | SD DataSolutions

GmbH | PANGAEA

My Background

• Committer and PMC member of Apache Lucene and Solr -
main focus is on development of Lucene Core.

• Implemented fast numerical search and maintaining the
new attribute-based text analysis API. Well known as
Generics and Sophisticated Backwards Compatibility
Policeman.

• Elasticsearch lover.
• Working as consultant and software architect at SD

DataSolutions GmbH in Bremen, Germany.
• Maintaining PANGAEA (Publishing Network for

Geoscientific & Environmental Data) where I implemented
the portal's geo-spatial retrieval functions with Apache
Lucene Core and Elasticsearch.

APACHE LUCENE ?
An Overview

Inverted
Index

Store

search

Results

retrieve
stored fields

TopDocs

Lucene’s data structures

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not

String comparison slow!

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not

String comparison slow!

Solution: Inverted index

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not Inverted index

Inverted Index

Inverted Index

Inverted Index

Inverted Index

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to
stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

Lucene is based on a combination of two well known

Information Retrieval models:

 Vector Space Model – scoring and relevance

 Boolean Model – narrowing down the documents to

score

Term-Frequency (tf) → the number of times a term t occurs in document d.

Inverse Document Frequency (idf) → the relation between the number of documents in the corpus
and the number of documents containing term t (global parameter).

Information Retrieval Model

Indexing with Lucene

• Fast: over 200 GB/hour

• Incremental and “near-realtime”

• Multi-threaded

• Beyond full-text: numbers, dates, binary,...

• Customize what is indexed (“analysis”)

• Customize index format (“codecs”)

ON THE WAY TO LUCENE 5…
History

History: Lucene up to version 3.6

History: Lucene up to version 3.6

• Lucene started > 10 years ago

– Lucene’s VINT format is old and not as friendly as
new compression algorithms to CPU’s optimizers
(exists since Lucene 1.0)

History: Lucene up to version 3.6

• Lucene started > 10 years ago

– Lucene’s VINT format is old and not as friendly as
new compression algorithms to CPU’s optimizers
(exists since Lucene 1.0)

• It’s hard to add additional statistics for scoring
to the index

– IR researchers don’t use Lucene to try out new
algorithms

History: Lucene up to version 3.6

• Lucene started > 10 years ago

– Lucene’s VINT format is old and not as friendly as
new compression algorithms to CPU’s optimizers
(exists since Lucene 1.0)

• It’s hard to add additional statistics for scoring
to the index

– IR researchers don’t use Lucene to try out new
algorithms

• Small changes to index format are often huge
patches covering tons of files

History: Apache Lucene 4

• Major release in October 2012

History: Apache Lucene 4

• Major release in October 2012

• New index engine:

– Codec support (pluggable via SPI)

– DocValues fields

History: Apache Lucene 4

• Major release in October 2012

• New index engine:

– Codec support (pluggable via SPI)

– DocValues fields

• New relevancy models: not only
TF/IDF !

– e.g., BM25

History: Apache Lucene 4

• Major release in October 2012

• New index engine:

– Codec support (pluggable via SPI)

– DocValues fields

• New relevancy models: not only
TF/IDF !

– e.g., BM25

• FSAs / FSTs everywhere

History: Apache Lucene 4

Complete overhaul of all APIs

• Terms got byte[]

• Low level terms enumerations and postings
enumerations refactored

• Query API internals (scorer, weight)

• Analyzers: new module, package structure changed
(pluggable via SPI)

• IndexReader => AtomicReader, CompositeReader

History: Apache Lucene 4

Complete overhaul of all APIs

• Terms got byte[]

• Low level terms enumerations and postings
enumerations refactored

• Query API internals (scorer, weight)

• Analyzers: new module, package structure changed
(pluggable via SPI)

• IndexReader => AtomicReader, CompositeReader

History: Apache Lucene 4

• Burden of maintaining the
old stuff:

– old index formats

– especially support for
Lucene 3.x indexes

• Every Lucene 4 release got new features!

– API glitches!!!

On-going Disasters

• Not only problems with bugs in Java runtimes

On-going Disasters

• Not only problems with bugs in Java runtimes

– Story could fill another talk!

On-going Disasters

• Not only problems with bugs in Java runtimes

– Story could fill another talk!

• Major problems with old index formats:

– Lucene 3 had a completely different index format

– without codec support (missing headers,…)

On-going Disasters

• Not only problems with bugs in Java runtimes

– Story could fill another talk!

• Major problems with old index formats:

– Lucene 3 had a completely different index format

– without codec support (missing headers,…)

Lot‘s of hacks!

Chronology

• Lucene 4.2.0: Lucene deletes entire index if
exception is thrown due do too many open
files with OpenMode.CREATE_OR_APPEND
(LUCENE-4870)

• Lucene 4.9.0: Closing NRT reader after
upgrading from 3.x index can cause index
corruption (LUCENE-5907)

• Lucene 4.10.0: Index version numbers caused
CorruptIndexException (LUCENE-5934)

Apache Lucene 5

A lot new features!

Apache Lucene 5

A lot new features!

• But not so many as you would expect for
major release!

Apache Lucene 5

A lot new features!

• But not so many as you would expect for
major release!

• Some more than in previous minor 4.x
releases…

Lucene 5: "Anti-Feature"

Removal of Lucene 3 index
support!

Lucene 5: "Anti-Feature"

Removal of Lucene 3 index
support!

• Get rid of old index segments:
IndexUpgrader in latest Lucene 4
release helps!

• Elasticsearch has automatic index
upgrader already implemented /
Solr users have to manually do this

Lucene 5: New data safety features

Lucene 5: New data safety features

• Checksums in all index files

– Checksums are validated on each merge!

– Can easily be validated during Solr‘s /
Elasticsearch‘s replication!

Lucene 5: New data safety features

• Checksums in all index files

– Checksums are validated on each merge!

– Can easily be validated during Solr‘s /
Elasticsearch‘s replication!

• Unique per segment ID

– ensures that the reader really sees the segment
mentioned in the commit

– prevents bugs caused by failures in replication
(e.g., duplicate segment file names)

Lucene 5: New index safety features

Cutover to NIO.2 (Java 7, JSR 203)

atomic rename to publish commit

fsync() on index directory

Java 7 support

• Introduced in Lucene 4.8
– Could have been Lucene 5 already

• Why?

– EOL of Java 6, but still bugs that affected Lucene

– Java 8 released

– use of new features for index safety!

Java 7 support (Lucene 4.8+)

Java 7 support (Lucene 4.8+)

• Try-With-Resources
– Nice, but we had it already implemented:

IOUtils.closeWhileHandlingExceptions()

Java 7 support (Lucene 4.8+)

• Try-With-Resources
– Nice, but we had it already implemented:

IOUtils.closeWhileHandlingExceptions()

• Some syntactic sugar

Java 7 support (Lucene 4.8+)

• Try-With-Resources
– Nice, but we had it already implemented:

IOUtils.closeWhileHandlingExceptions()

• Some syntactic sugar

• Partial implementation of NIO.2 for FSDirectory
– (allows to delete open files on Windows!)

Java 7 support (Lucene 4.8+)

• Try-With-Resources
– Nice, but we had it already implemented:

IOUtils.closeWhileHandlingExceptions()

• Some syntactic sugar

• Partial implementation of NIO.2 for FSDirectory
– (allows to delete open files on Windows!)

• MethodHandle / ClassValue for Tokenization
API‘s internals
– Huge speedup for dynamic instantiation of token

Attributes, especially in Java 8!

Java 7 support (Lucene 4.8+)

Java 7u55+ has
no serious bugs anymore

(still a no-go for G1GC with Lucene)

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

• java.io.File* => forbidden-apis *)

*) https://code.google.com/p/forbidden-apis/

https://code.google.com/p/forbidden-apis/
https://code.google.com/p/forbidden-apis/
https://code.google.com/p/forbidden-apis/
https://code.google.com/p/forbidden-apis/

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

• java.io.File* => forbidden-apis *)

• Atomic rename to publish commit

– no more segments.gen

– fsync() on directory metadata

*) https://code.google.com/p/forbidden-apis/

https://code.google.com/p/forbidden-apis/
https://code.google.com/p/forbidden-apis/
https://code.google.com/p/forbidden-apis/
https://code.google.com/p/forbidden-apis/

Lucene 5: Java 7 NIO.2

No more index corruption because of broken
Exception handling:

• Exceptions now have a clear meaning, you can
rely on

• NIO.2 APIs now throw useful exceptions

• before that, File.rename() / delete()
could do nothing at all!

Java 7 NIO.2 - Consequences

Java 7 NIO.2 - Consequences

• Don‘t use Future.cancel(true) !!!
– Never interrupt searching threads, it kills your
IndexReader!

– Alternative: org.apache.lucene.store.RAFDirectory (RAF =
RandomAccessFile, only available in “misc” module)

Java 7 NIO.2 - Consequences

• Don‘t use Future.cancel(true) !!!
– Never interrupt searching threads, it kills your
IndexReader!

– Alternative: org.apache.lucene.store.RAFDirectory (RAF =
RandomAccessFile, only available in “misc” module)

• All other file I/O is now channel based (or MMap)
– If cancelled throws ClosedByInterruptException

– also SimpleFSDirectory !

Java 7 NIO.2 - Consequences

• Don‘t use Future.cancel(true) !!!
– Never interrupt searching threads, it kills your
IndexReader!

– Alternative: org.apache.lucene.store.RAFDirectory (RAF =
RandomAccessFile, only available in “misc” module)

• All other file I/O is now channel based (or MMap)
– If cancelled throws ClosedByInterruptException

– also SimpleFSDirectory !

• Use Paths.get() while opening
DirectoryReader / IndexWriter
– Alternative: use File.toPath()

Lucene 5.0: Overhaul of Codec API

• Pull APIs throughout Codec components

– E.g., PostingsFormat

• Norms are now handled separate codec
component

Lucene 5.0: Index merging

Lucene 5.0: Index merging

• Linux: Detection if index is on SSD

– Better default merging settings

– Other operating systems assume spinning disks
(no change)

Lucene 5.0: Index merging

• Linux: Detection if index is on SSD

– Better default merging settings

– Other operating systems assume spinning disks
(no change)

• Merge Scheduler: Auto Throttling

– Automatically controls I/O rates based on
indexing/merging rate

– Stalling under high load is more unlikely!

Lucene 5.0: Reduced Heap Usage

• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

Lucene 5.0: Reduced Heap Usage

• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

• Most classes now implement Accountable
– Allows to query heap usage
– Nice "tree view" on heap usage of index components

Lucene 5.0: Reduced Heap Usage

• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

• Most classes now implement Accountable
– Allows to query heap usage
– Nice "tree view" on heap usage of index components

_cz(5.0.0):C8330469: 28MB

 postings [...]: 5.2MB

 ...

 field 'latitude' [...]: 678.5KB

 term index [FST(nodes=6679, ...)]: 678.3KB

Lucene 5.0: CustomAnalyzer

• Freely configurable Analyzer

• Based on SPI framework for Tokenizers,
TokenFilters and CharFilters

• Similar to Apache Solr‘s schema.xml:

– Generic names of components (like Elasticsearch)

– Same config options like Apache Solr

• Builder API

Lucene 5.0: CustomAnalyzer

• Freely configurable Analyzer

• Based on SPI framework for Tokenizers,
TokenFilters and CharFilters

• Similar to Apache Solr‘s schema.xml:

– Generic names of components (like Elasticsearch)

– Same config options like Apache Solr

• Builder API

Analyzer ana =

CustomAnalyzer.builder(Paths.get("/path/to/config"))

 .withTokenizer("standard")

 .addTokenFilter("standard")

 .addTokenFilter("lowercase")

 .addTokenFilter("stop",

 "ignoreCase", "false",

 "words", "stopwords.txt",

 "format", "wordset")

 .build();

Die, FieldCache,… die, die, die!

• FieldCache is gone from Lucene Core

• Use DocValues fields and APIs!

Die, FieldCache,… die, die, die!

• FieldCache is gone from Lucene Core

• Use DocValues fields and APIs!

• Not completely gone:

– UninvertingReader in misc/ module emulates
DocValues by uninverting index

– UninvertingReader allows to merge to a new
index, automatically adding DocValues!

What‘s new

Apache Solr 5.0

New release bundled
with Lucene 5.0 release

Improved fault tolerance

Solr 5.0: No Webapp anymore!

• Solr ships as server software
– like MySQL, PostgreSQL,…

– or Elasticsesarch

• Start/Stop scripts for SysVinit

• JVM tuning by default

• Scripts to create collections

• No "official" WAR file anymore
– Maven

– Download distribution

Solr 5.0: No Webapp anymore!

• Solr ships as server software
– like MySQL, PostgreSQL,…

– or Elasticsesarch

• Start/Stop scripts for SysVinit

• JVM tuning by default

• Scripts to create collections

• No "official" WAR file anymore
– Maven

– Download distribution

Solr 5.0: Distributed IDF

Support for distributed Inverse Document
Frequency:

• Makes use of caching of IDF from other nodes

• Several caching implementations

Solr 5.0: Distributed IDF

Support for distributed Inverse Document
Frequency:

• Makes use of caching of IDF from other nodes

• Several caching implementations

Should only be used if exact scoring is really needed

• If documents are not well (randomly) distributed

Solr 5.0: Config API

• Makes parameters of RequestHandlers
configurable

• Allows to change RequestHandlers

• Upload of plugin JARs

Solr 5.0: Other features

• Bandwidth control for index replication

• BLOBs API

• SolrJ improvements:

– Rename SolrServer to SolrClient

– Support of Collections API

• Split Clusterstate

– Scales better for hundreds of nodes

THANK YOU!

Questions?

Contact

Uwe Schindler
uschindler@apache.org
http://www.thetaphi.de

 @thetaph1

SD DataSolutions GmbH

Wätjenstr. 49

28213 Bremen, Germany

+49 421 40889785-0

http://www.sd-datasolutions.de

mailto:uschindler@apache.org
http://www.thetaphi.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/

