Wireless Networks In-the-Loop

gr-winelo – A GNU Radio Network Emulator

Nico Otterbach and Gerald Baier
Outline

1. The Idea
2. Basic Principles and Implementation
3. Channel Models
4. Outlook
Outline

1. The Idea
2. Basic Principles and Implementation
3. Channel Models
4. Outlook
SDR development thought through to the end

- SDR simplifies Radio development
 → ...well, most of the time ;)

- SDR introduces a new workflow for Radio development
 → Debugger, Profiler, Automated Tests, ...

⇒ Why just use them for a single block or a single node?
Wireless Networks In-the-Loop

- Emulate the entire network
- Allow seamless switching

→ Same code base for measurements and simulations
→ Iterative improvement in every single step

⇒ Stay in the software domain as long as possible
⇒ Go back to the software domain as soon as possible
Benefits

- **Flexibility & Scalability**
 - Ever tested a network with 5+ nodes in different arrangements?

- **Only one codebase**
 - No need for Matlab, ns3, ...

- **Easy Debugging**
 - Set breakpoints on the air link!

- **"Controllable realism"**
 - Turn impairments on/off seperated from each other

⇒ Reduced development time & increased feelgood factor!
Inhalt

1 The Idea

2 Basic Principles and Implementation

3 Channel Models

4 Outlook
Basic structure

- Client/server architecture
- Two main components
 - (Virt-)RF-Interface
 - Channel matrix
- Developed at Communications Engineering Lab (KIT, Germany)
Timing
- Zero Padding – accurate and generic mode
- Realtime simulation mode
- Timed commands
- Absolute time (GPSDO)

Hardware- and channel emulation
- Modular channel models
- Channel matrix
- Mixing and rate conversion

Simulation interface
- UHD compatible
Zero Padding

- **SOB**: Start of burst
- **Timestamp**: Tx time
- **EOB**: End of burst

⇒ "Count" number of zeros!

Implementations

- Sample-accurate Zero Padding
- Generic (inaccurate) Zero Padding
- Initial Zero Padding
Modular Design

- on all layers.
- simplifies debugging.
- enables easy extensibility.
- provides an insight about the inner structure.
- enables easy replacement of individual blocks.
Simulation Interface

- Twisted for Signaling
- Sample exchange via TCP/UDP
- Seamless switching (simulation/measurement)

→ Support existing applications!

UHD Compatibility

- Model hardware features (mixing, ...)
- Provide status information
- Identical methods & parameterization
P2P – Spectrograms

Measurement

Simulation

⇒ DC-Offset
⇒ Rx filter characteristic
⇒ Length of data packet
⇒ Interferer at 314,1 MHz
Live Demo 1
Content

1. The Idea
2. Basic Principles and Implementation
3. Channel Models
4. Outlook
The Wireless Radio Channel

- How the wireless radio channel behaves depends largely on the environment of the system
 - Frequency band
 - Indoor vs. outdoor
 - Movement speed
 - Symbol period/data rate
 - Position of objects

- Multiple paths with different delays and phases
- Moving the receiver changes the phases resulting in interference
- Movement also affects the perceived carrier frequency (Doppler shift)
The fluctuation of the received power is called fading.

Fading depends largely on:
- the frequency band
- movement speed of transmitter, receiver and scatterers
- position of transmitter, receiver and scatterers

Channel models specifically tailored to a certain propagation environment can be used to test a system.
The Channel Impulse Response

- A wireless radio channel can be described by the channel impulse response.
- Imagine a short pulse is sent by the transmitter.
- The signal at the receiver consists of all “echos” of the transmitted pulses: the channel impulse response.

(a) transmitted impulse
(b) channel impulse response $h(\tau)$
Intersymbol Interference

- How does the length of the CIR (delay spread) affect the transmission of data?
- If the delay spread is short compared to the symbol period only the echos of the same symbol interfere (frequency flat)
- A relatively long delay spread results in Intersymbol Interference (frequency selective)

When designing a system the expected radio channel has to be considered.
Channel Sounding

- Measuring the CIR is called Channel Sounding
- The easiest way is to just transmit a short pulse. But the Signal-to-Noise Ratio is bad
- A correlation channel sounder exploits the autocorrelation properties of maximum length sequences (MLS)
 - The transmitter sends an MLS
 - The receiver correlates the received signal with the same MLS
Channel Sounding: Measurement Setup

(a) Forum @KIT (Google maps)

(b) Measurement Setup

- Two USRP N210 both equipped with a GPS Disciplined Oscillator (GPSDO)
- Oscillators of the transmitter and receiver have to be synchronized for measuring the Doppler spectrum
- Sample rate is too low for indoor measurements
Channel Sounding: Measurement Results

(a) CIR with a moving receive antenna

(b) Comparison with COST207 rural area model
Channel Models in WiNeLo

- WiNeLo comes with some channel models: AWGN, Rayleigh, COST207
- Every GNU Radio block can be used: gr-channels
- Channel models can be created from channel sounder measurements: very basic and still experimental
Outline

1. The Idea
2. Basic Principles and Implementation
3. Channel Models
4. Outlook
Outlook

- Clean up code base
- Alpha release in 2014
- Add more HW & channel models
- Centralized test management with WiNeLo integration

<table>
<thead>
<tr>
<th>Channel Model</th>
<th>Name</th>
<th>Passed Samples</th>
<th>Virtual Time</th>
<th>Frequency</th>
<th>Samplerate</th>
<th>Packet Size</th>
<th>Data Port</th>
<th>Hardware Model</th>
<th>Host IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>FHAH Tx 1</td>
<td>13828264</td>
<td>13.828264</td>
<td>426100000</td>
<td>1000000</td>
<td>4096</td>
<td>8894</td>
<td>basic</td>
<td>127.0.0.1</td>
</tr>
<tr>
<td>Node 2</td>
<td>FHAH Rx 1</td>
<td>13828264</td>
<td>13.828264</td>
<td>426100000</td>
<td>1000000</td>
<td>4096</td>
<td>8895</td>
<td>basic</td>
<td>127.0.0.1</td>
</tr>
<tr>
<td>Node 3</td>
<td>FHAH Tx 2</td>
<td>49273293</td>
<td>49.273293</td>
<td>427100000</td>
<td>1000000</td>
<td>4096</td>
<td>8896</td>
<td>basic</td>
<td>127.0.0.1</td>
</tr>
<tr>
<td>Node 4</td>
<td>FHAH Rx 2</td>
<td>49273293</td>
<td>49.273293</td>
<td>427100000</td>
<td>1000000</td>
<td>4096</td>
<td>8897</td>
<td>basic</td>
<td>127.0.0.1</td>
</tr>
</tbody>
</table>
Questions?

Thanks for your attention!

⇒ github.com/no-net
⇒ github.com/gbaier