Wireless Networks In-the-Loop

gr-winelo - A GNU Radio Network Emulator

Nico Otterbach and Gerald Baier

Outline

1 The Idea

2 Basic Principles and Implementation

3 Channel Models

Outline

2 Basic Principles and Implementation

3 Channel Models

SDR development thought through to the end

SDR simplifies Radio development

 \rightarrow ...well, most of the time ;)

SDR introduces a new workflow for Radio development

 $\rightarrow\,$ Debugger, Profiler, Automated Tests, ...

 \Rightarrow Why just use them for a single block or a single node?

Wireless Networks In-the-Loop

- Emulate the entire network
- Allow seamless switching
- \rightarrow Same code base for measuremens and simulations
- \rightarrow Iterative improvment in every single step

- ⇒ Stay in the software domain as long as possible
- \Rightarrow Go back to the software domain as soon as possible

Benefits

Flexibility & Scalability

 \rightarrow Ever tested a network with 5+ nodes in different arrangements?

Only one codebase

 $\rightarrow\,$ No need for Matlab, ns3, ...

Easy Debugging

 \rightarrow Set breakpoints on the air link!

Controllable realism

 \rightarrow Turn impairments on/off seperated from each other

⇒ Reduced development time & increased feelgood factor!

Inhalt

2 Basic Principles and Implementation

3 Channel Models

Basic structure

- Client/server architecture
- Two main components
 - \rightarrow (Virt-)RF-Interface
 - \rightarrow Channel matrix

Developed at Communications Engineering Lab (KIT, Germany)

Timing

- Zero Padding accurate and generic mode
- Realtime simulation mode
- Timed commands
- Absolute time (GPSDO)

Hardware- and channel emulation

- Modular channel models
- channel matrix
- Mixing and rate conversion

Simulation interface

UHD compatible

Zero Padding

- SOB: Start of burst
- Timestamp: Tx time
- EOB: End of burst
- \Rightarrow "Count" number of zeros!

Implementations

- Sample-accurate Zero Padding
- Generic (inacurate) Zero Padding
- Initial Zero Padding

Modular Design

Modular design...

- on all layers.
- simplifies debugging.
- enables easy extensibility.
- provides an insight about the inner structure.
- enables easy replacement of individual blocks.

Simulation Interface

- Twisted for Signaling
- Sample exchange via TCP/UDP
- Seamless switching (simulation/measurement)
- \rightarrow Support existing applications!

UHD Compatibility

- Model hardware features (mixing, ...)
- Provide status information
- Identical methods & parameterization

P2P – Spectrograms

Simulation

Measurement

- \implies DC-Offset
- \implies Rx filter characteristic
- \implies Length of data packet
- \implies Interferer at 314,1 MHz

Live Demo 1

Content

2 Basic Principles and Implementation

3 Channel Models

The Wireless Radio Channel

- How the wireless radio channel behaves depends largely on the environment of the system
 - Frequency band
 - Indoor vs. outdoor
 - Movement speed
 - Symbol period/data rate
 - Position of objects

- Multiple paths with different delays and phases
- Moving the receiver changes the phases resulting in interference
- Movement also affects the perceived carrier frequency (Doppler shift)

Channel Models

- The fluctuation of the received power is called fading
- Fading depends largely on
 - the frequency band
 - movement speed of transmitter, receiver and scatterers
 - position of transmitter, receiver and scatterers
- Channel models specifically tailored to a certain propagation environment can be used to test a system

The Channel Impulse Response

- A wireless radio channel can be described by the channel impulse response
- Imagine a short pulse is sent by the transmitter
- The signal at the receiver consists of all "echos" of the transmitted pulses: the channel impulse response.

Intersymbol Interference

- How does the length of the CIR (delay spread) affect the transmission of data?
- If the delay spread is short compared to the symbol period only the echos of the same symbol interfere (frequency flat)
- A relatively long delay spread results in Intersymbol Interference (frequency selective)

(b) intersymbol interference

When designing a system the expected radio channel has to be considered

Channel Sounding

- Measuring the CIR is called Channel Sounding
- The easiest way is to just transmit a short pulse. But the Signal-to-Noise Ratio is bad
- A correlation channel sounder exploits the autocorrelation properties of maximum length sequences (MLS)
 - The transmitter sends an MLS
 - The receiver correlatates the received signal with the same MLS

Channel Sounding: Measurement Setup

(a) Forum @KIT (Google maps)

(b) Measurement Setup

- Two USRP N210 both equipped with a GPS Disciplined Oscillator (GPSDO)
- Oscillators of the transmitter and receiver have to be synchronized for measuring the Doppler spectrum
- Sample rate is too low for indoor measurements

Channel Sounding: Measurement Results

(a) CIR with a moving receive antenna

(b) Comparison with COST207 rural area model

Channel Models in WiNeLo

- WiNeLo comes with some channel models: AWGN, Rayleigh, COST207
- Every GNU Radio block can be used: gr-channels
- Channel models can be created from channel sounder measurements: very basic and still experimental

Outline

2 Basic Principles and Implementation

3 Channel Models

- Clean up code base
- Alpha release in 2014
- Add more HW & channel models
- Centralized test management with WiNeLo integration

_				A Contract Million of		6	De al contratione	0		
	Active	Name	Passed Samples	Virtual Time	Frequency	Samplerate	Packet Size	Data Port	Hardware Model	Host I
Node 1	•	FHAH Tx 1	13828264	13.828264	426100000	1000000	4096	8894	basic	127.0.0
lode 2	•	FHAH Rx 1	13828264	13.828264	426100000	1000000	4096	8895	basic	127.0.0
Node 3	•	FHAH Tx 2	49273293	49.273293	427100000	1000000	4096	8896	basic	127.0.0
lode 4	•	FHAH Rx 2	49273293	49.273293						
			492/3293	49.273293	427100000	1000000	4096	8897	basic	127.0.0
			492/3293	49.273293	427100000	1000000	4096	8897	basic	127.0.8

Questions?

Thanks for your attention!

⇒ github.com/no-net

 \Rightarrow github.com/gbaier