
Status of GPU offloading on Wayland

Status of GPU offloading on Wayland

Axel Davy

FOSDEM 2014



Status of GPU offloading on Wayland

1 How to do GPU offloading

2 GPU offloading with X DRI2

3 GPU offloading with Wayland

4 and XWayland?



Status of GPU offloading on Wayland
How to do GPU offloading

Using a device

Traditional way:
A DRM Master
Clients need to be authenticated by the DRM Master to
render

New way: Render-nodes. Allow to render without authentication
(but without some functionalities)



Status of GPU offloading on Wayland
How to do GPU offloading

Sharing the buffers

Access:
VRAM: per-device
RAM with GTT: cross-device

Sharing:
Handles → per context
Use example: Mesa internally, KMS

Gem names → per device insecure
Use example: DRI2 DDX to allocate a buffer for Mesa

Prime/Dma-buf fd → to share secure
Use example: Wayland, DRI2 GPU offloading, DRI3



Status of GPU offloading on Wayland
How to do GPU offloading

Memory Speed

Speed:
VRAM/RAM: fast.
DDR3 900Mhz/128bits → read 14,4 GB/s + write 14,4 GB/s
PCI express 2.0 x8: 8 x 500Mhz = 4 GB/s
Thunderbolt ≈ 1 GB/s

A 1080p screen buffer: ≈ 8 MB
60 screen buffer transfer per second: ≈ 480 MB/s



Status of GPU offloading on Wayland
How to do GPU offloading

Memory Speed

My system:
intel HD4000. Ram DDR3 800Mhz.
Amd HD7730m. VRAM DDR3 900Mhz. PCI express 2.0 x8.

Rendering glmark2 on wayland (’build’ test) in RAM:
Intel HD4000: 1320 fps ≈ 10.5 GB/s
Amd HD7730m: 250 fps ≈ 2 GB/s



Status of GPU offloading on Wayland
How to do GPU offloading

Tiling

Tiling: Special pixel ordering optimized to exploit local spatial
coherence
→ good for performance !
Not understandable between different card
models/generations !

Example: Intel HD4000. OpenArena
tiling → 32 fps
no tiling → 10 fps



Status of GPU offloading on Wayland
How to do GPU offloading



Status of GPU offloading on Wayland
How to do GPU offloading



Status of GPU offloading on Wayland
How to do GPU offloading

Dmabuf fences

Work in progress by Maarten Lankhorst
http://cgit.freedesktop.org/∼mlankhorst/linux

→ will remove remaining glitches!

Associate to each Dma-buf:
One write fence
Several read fences

Extra feature: userspace can poll a dma-buf



Status of GPU offloading on Wayland
GPU offloading with X DRI2

X DRI2

Main mechanism:

Client gets the device path, opens it and authenticates to the
server.

Client gets a buffer from the X server. It renders to it.

Client tells X it has finished. X copies the buffer content to a
correct location.



Status of GPU offloading on Wayland
GPU offloading with X DRI2

A DDX per device/provider

Manual configuration in xorg.conf or automatic

GPU offloading configured with XRandr. Two modes:
One gpu for display/One gpu for rendering
One gpu for display + rendering/One gpu for offloading
DRI_PRIME to specify the GPU to use (by indicated the
provider number)



Status of GPU offloading on Wayland
GPU offloading with X DRI2

With Prime, a buffer is created, shared between the two
devices, and with no tiling.
→ this requires special DDX code

DRI2 copy is done to this buffer.

When the client is fullscreen, this buffer is used for the screen
pixmap, else there will need compositing to make the content
be copied to the screen pixmap.

Everytime a part of the shared buffer is damaged, the whole
buffer is damaged.



Status of GPU offloading on Wayland
GPU offloading with X DRI2

Current issues

No synchronization → tearings.

BUT Content ok



Status of GPU offloading on Wayland
GPU offloading with Wayland

Wayland

Main mechanism:

Client gets the path of the device used by the compositor,
opens it and authenticates to the server (or opens the
render-node of another device).

Client creates a set of buffers and lets the compositor know
their existence. Renders to one, tell the compositor it has
rendered to it, then render to another one. Will wait the
compositor has released a buffer to use it again.



Status of GPU offloading on Wayland
GPU offloading with Wayland

What we would want to improve over DRI2

Tearings
Synchronization
Need of server side support for Prime
No configuration needed
Support for every graphic device
Hot plug support
Buffer compatibility with the main graphic device handled
client side, not server side



Status of GPU offloading on Wayland
GPU offloading with Wayland

First scheme.

Server advertises the cards it can authenticate to.
Client can ask to authenticate to these cards.
Client sends a buffer the server’s card can read (linear tiling).

What we want to improve:

Less server side code
Simplificate the code



Status of GPU offloading on Wayland
GPU offloading with Wayland

New Scheme

Rely on render-nodes:
The server doesn’t need to know the existence of the other
cards

No need of extra code!



Status of GPU offloading on Wayland
GPU offloading with Wayland

No provider number here.
→ ID_PATH_TAG, tag given by udev.

Example: launching glmark2-wayland on my dedicated card:

DRI_PRIME="pci-0000_01_00_0" glmark2-wayland
or (not for compositors)
DRI_PRIME=1 glmark2-wayland

→ hotplug, external devices, etc can be supported!



Status of GPU offloading on Wayland
GPU offloading with Wayland

Rendering to linear buffer isn’t optimal.
→ Render to a tiled buffer, and copy to a linear buffer shared with
the compositor

Two ways:
Embed clients in an Wayland compositor running on the
dedicated card

Copy done in the embedded compositor.
But induces small lag for input/output, and more cpu
comsumption.
Glitches only if input lag > (1/refresh rate)ms

Do the copy in Mesa
Glitches if we don’t glFinish
But glFinish induces a loss of performance



Status of GPU offloading on Wayland
GPU offloading with Wayland

In both cases

You can rull full desktop on the card you want

No tearings !

Vsync working



Status of GPU offloading on Wayland
GPU offloading with Wayland

Several cards displaying

OK, but what about the following case:

Two displays, A and B.

Two cards, "1" connected to A, "2" connected to B.



Status of GPU offloading on Wayland
GPU offloading with Wayland

X DRI2

Server controls the devices

DDX for each device

Copy tiled buffer → linear buffer done server side

Clients authenticate to the server

Special server code to handle rendering on a different card



Status of GPU offloading on Wayland
GPU offloading with Wayland

Wayland

Server doesn’t need to do anything

Rely on render-nodes

Client knows it uses a different card than the server and
handles this case differently.

Copy tiled buffer → linear buffer done client side (or with an
embed compositor)



Status of GPU offloading on Wayland
GPU offloading with Wayland

What has been done

Render nodes

DRI_PRIME inside Mesa (rendering in a linear buffer if
needed)

We can choose the device to use with ID_PATH_TAG

Shutdown the dedicated GPU when unneeded



Status of GPU offloading on Wayland
GPU offloading with Wayland

What needs to be done

Dma-buf fences

Mesa: rendering to a tiled buffer, and doing a copy to a linear
buffer

Use driconf to remember which device we want to use for an
application

Remaining applications using Gem Names must be ported to
use Prime (ex: vaapi)

Handle displays connected to multiple GPUs



Status of GPU offloading on Wayland
and XWayland?

XWayland: wlglamor

wlglamor: XWayland DDX using Glamor to support Xrender and
DRI2/DRI3.

XWayland: Xserver linked to a Wayland compositor.
Glamor: don’t care of the GPU. OpenGL based.

→ No need to support X GPU offloading.



Status of GPU offloading on Wayland
and XWayland?

Problem: DRI2 doesn’t work with render-nodes.

Hopefully DRI3 can work with render-nodes. And DRI3 GPU
offloading support could be similar.

DRI3 still not entirely ready. Fixes coming.



Status of GPU offloading on Wayland
and XWayland?

Thanks!


	How to do GPU offloading
	GPU offloading with X DRI2
	GPU offloading with Wayland
	and XWayland?

