
Porting Valgrind on Solaris

Ivo Raisr Petr Pavlů

February 2, 2014



Porting Valgrind on Solaris

• Project started as a diploma thesis
• Gained a traction afterwards
• Currently still work-in-progress with some limitations
• Available at
https://bitbucket.org/setupji/valgrind-solaris

• Maintained as a separate fork from upstream, sync’ed from
time to time

https://bitbucket.org/setupji/valgrind-solaris


Authors

• Collaborative effort of:
• Petr Pavlu – initial author, core functionality (threads,

signals, syscall machinery), many tests
• Ivo Raisr – coredump support, syscall, ioctl and door

wrappers, vgdb-invoker implementation
• Theo Schlossnagle – initial AMD64 support



Solaris and illumos

• SunOS = Unix operating system developed by Sun
Microsystems in 1980’s

• Aimed at SPARC workstations and server computer
systems (centralized computing)

• Rebranded to Solaris in 1992



Solaris and illumos
• Popular stateless thin client SunRay
• Popular sparc machines in past:

• UltraSparc III from Sun Microsystems
• T1 (Niagara) with hardware threads and

cryptographics acceleration
• M5000 and M9000 from Fujitsu for enterprise

workloads



Solaris and illumos
• Solaris 10 released on both sparc and x86 in 2005
• OpenSolaris initiative (”almost” open source with CDDL

license) in 2005
• First release of OpenSolaris in 2008
• Several experimental ports of OpenSolaris (apart from x86

and sparc)
• In 2008 Sun Microsystems had problems→ talks with IBM

and HP about merger
• In 2010 Sun Microsystems was acquired by Oracle



Solaris and illumos

• illumos forked right before Oracle announced OpenSolaris
decomission (illumos is just OS/Net consolidation)

• illumos used in a number of distributions; most known
OpenIndiana

• Oracle Solaris 11 released in 11/2011 after 6 years of
development; closed source again



Solaris and illumos
• Oracle Solaris 11.1 released in 10/2012
• Oracle Solaris 11.2 will be released around mid-2014;

supporting new generation of sparc T5 and Fujitsu M6
• Solaris and illumos are no longer desktop OS rather they

are designed for highly-scalable engineered systems or
appliances

• valgrind-solaris aims at both Oracle Solaris and illumos



Current status

• Sync’ed with upstream valgrind post 3.9.0
• Support for x86 platform stable
• Support for AMD64 in progress
• Tools helgrind and drd are currently disabled
• Test suite results on Oracle Solaris 11.1:

438 tests, 8 stderr failures, 2 stdout failures, 0 stderrB
failures, 2 stdoutB failures, 0 post failures

• A few more failures are present on illumos



Differences between Solaris and Linux

• GNU toolchain used (gcc 4.5 or higher, autotools, gmake)
with exception of Solaris link editor (ld)

• Configure-time checks for available functionality
• System calls are not an exported and stable interface – the

standard library (libc) is
• Different syscalls (almost all of them)
• Syscall mechanics different
• Threads creation via lwp create() not sys clone()
• · · ·



Porting difficulties – Signal handling
• On Solaris, user space is completely responsible for

returning from a signal handler (no sa restorer) and the
kernel does not directly restart interrupted syscalls

• Port builds simulated signal frames without Valgrind data
(except a few values)

siginfo

ucontext

ucontext pointer

siginfo pointer

signal number

0xFFFFFFFF



Porting difficulties – Doors facility

• Facility for fast inter-process communication, developed as
a part of the Spring operating system in early 1990s

• Server threads receive client data on stack→ door return()
calls have to be executed while running on the guest stack

before a door return() call

parameters

0xFFFFFFFFSP

after the call

parameters

0xFFFFFFFF

data

controlSP



Porting difficulties – Vfork support

• On Linux, Valgrind translates vfork to fork
• On Solaris, correct vfork semantics has to be supported,

the standard library (libc) relies on it
• Several core parts of Valgrind have to be aware of this

support

Parent process

CPU context
address space

signal state

open files

Shared
address space

Child process

CPU context
address space

signal state

open files



Sustainability of the project

• When possible, the port tries to have stricter
implementation than the upstream code (Linux, Mac
OS X); any error caused by a new Solaris version or by
changes in the common code should be visible early

• Collaborative effort of several people; each of them can
make non-trivial changes in the port

• All port-specific code is thoroughly tested – currently 40
tests with 5000 lines of code in total, over 300 atomic
scalar tests


