Valgrind BoF

ldeas, new features and directions

Everybody!

Valgrind developers and users are encouraged to
participate by joining the discussion. And of
course by kindly (or bitterly:) complain about bugs

you find important that are still Not YE
that many years!?@!!!

solved for

Discuss any kind of possible improvement
(technical or functional) to Valgrind.



About Me

Mark Wielaard <mjw@redhat.com>

Maintainer of Valgrind in Fedora, Red Hat
Enterprise Linux and Developer Toolset.

Done |itt

Doesn't

e Valgrind

nave the fu

nacks here and there

| deep overview

But did collect some questions and suggestions



About you

* Please participate, ask questions, do suggestions,
give opinions!

* Please take notes and report to the mailinglist <
valgrind-developers@lists.sourceforge.net >

 Lots of different stuff, ~5 minutes per “topic”.

- Both “big” and “small” issues.
- So lets speed up and slow down depending on interest


mailto:valgrind-developers@lists.sourceforge.net

Appearing/Disappearing Code

e Support stack traces containing IP of "disappeared"” code e.qg.
In memcheck, memory can be allocated by a piece of code that
has disappeared at the time the stacktrace has to be shown.

e Support build-ids (can maybe look them up offline)
https://fedoraproject.org/wiki/Releases/Feature
BuildId

« Better support compiled/JITted code. Allowing the JIT compiler
to indicate to Valgrind the link between the JITted code and the
source code. (See also GDB BoF, steal their code/design?)

- MONO had an interface hack/patch
« http://tirania.org/tmp/valgrind-mono.patch



Change the defaults?

* Revisit the default value of (some of) the
command line options

- Decrease helgrind redzone size from 16 to the
minimum needed.

- Change -keep-stacktraces=alloc-then-free
to alloc-and-free default

- Other relevant default options we should change?



XTree

* Implement a generalised "xtree"

* Massif has a data structure called an xtree. Basically, a bunch
of stack traces, represented in the form of a tree, where each
node of the tree contains the sum of all the memory size
allocated by the called functions.

 The idea Is to generalise this data structure, so as to make it
usable in other contexts:
- use the generalised one to replace the massif one.
- also use it in memcheck (to allow massif like output from memcheck)

- maybe other uses, e.g. to collect and show events or calls to various
things, using a common infrastructure.



An Interactive SQL relational
Interface to Valgrind data structures

* https://github.com/mfragkoulis/PICO_QL/tree/master/src/Valgrind-mod

« Marios Fragkoulis


https://github.com/mfragkoulis/PiCO_QL/tree/master/src/Valgrind-mod

Client Requests as SDT markers?

e SDT markers

https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation

» Used by SystemTap, gdb, pert.

- Source compatible with dtrace markers

* But Is there anything wrong with Client
Reqguests in the first place?


https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation

Instant leak detector

* Modify memcheck to report the last leaked
pointer to a block.

* Integrate "omega" as a memcheck option or

omega as a separate tool.
http://www.brainmurders.eclipse.co.uk/omega.html



80 bit arithmetic on x86/AMD64

« Some complains

* IS It an open prob
just work nobody
work would it be?

pecause It surprises users.
em? Would be too slow? Or

nas done yet? How much



VEX API redesign

* Currently geared toward the dynamic paradigm

* APIs do the whole process: lift, iInstrument,
optimize, finalize, instruction select, compile
back to binary.

 |ssue for static analysis (PyVEX)
- Have to patch out half of LIbBVEX_ Translate
* Yan already has some patches?



Cross-arch VEX/Valgrind

 VEX has some host-platform and guest-platform
homogeneity assumptions.

- example, compiled as-is on x86, the MIPS
translation code is broken due to the fact that neither
MIPSBE nor MIPSLE Is defined.

 What would it take to make valgrind cross-arch?

- syscall layer
 How about starting with 1686 on x86 647



Which CPUID is it anyway?

» Valgrind isn't completely consistent in handling
host CPU capabilities vs VEX emulation
capabillities.

- What can we do to improve that?
e Make It user tunable?



VEX split lift-to-IR and compile-back

 VEX assumes that any platforms that it
Implements are going to be lifted to IR and then
compiled back down.

* For static analysis we only need lifting.
» Partially supported arches?



Improve memcheck leak heuristics

* In 3.9.0, some heuristics were added to memcheck
to decrease the false positive rate of possible leaks
for c++ objects (such as std::string).

 Add more of such heuristics?

* And/or have a more flexible way to define
heuristics, e.d. using "user definable expressions"?

 Add a way to specify a stack trace to match for a
heuristic?



helgrind improvements

Currently, in race conditions errors, locks are only
described by an address and their creation stack trace.

Add more info (when possible) based e.g. on
--read-var-1info=yes

Speed up helgrind 'mini stacktrace' capture avoid to
take duplicate stack traces? Or have a way to detect
only the top most IP has been updated since previous
stack trace?

Suppressions entries for helgrind with matching the
stack trace of one or the other or both threads involved.



Making Valgrind multi-threaded

« parallelising Memcheck

» parallelising the rest of the framework
e Other tools



Valgrind and transactional memory

» Currently xbegin “fail early, fail often”
» Could we do something more interesting?

e Could we use tx In V Itself?



Make Callgrind work sanely on ARM
(and PPC)

* The Callgrind algorithm to track call and return
IS to be iImproved to work properly on these

platforms.
* |s there a way to make this better?

- E.g. by having a fast way working in most cases,
and rely on unwind info in the difficult cases. Can

we detect at instrumentation time that an instruction
IS a difficult case?




Redo the JIT framework to reduce
baseline overheads

* Could we reuse some "compiler lib" (gemu tcg,
llvm or gcclib as code generator)?

- Could we reuse some "compiler lib" (gemu tcg, llvm
or gcclib as code generator)? Destroys startup
time?

* Any other suggestion to (significantly) improve
the speed of Valgrind JITted code?



Release/bugfixing strategy/policy

README_DEVELOPERS_processes

Timed minor releases (every X months)?
Split SVN Valgrind/VEX

- Merge?

GIT or Mercurial?




Packaging valgrind for distros

* handling patches (more frequent releases?)

e Suppressions (who should ship them?)
- Can we push it to other packages/libraries?



Website/Bugzilla/IRC

valgrind.org

Web site pages in svn?,

- So it can be updated by all developers with a patch as everything else
Do we want a wiki?

- For Developer? For Users?

Make sure bugzilla sends a mail to the developer mailing list when
there is a new bug/comment in a bug.

— Currently you have “watch” Julian.

Have a log of irc so development ideas can be seen by all?
- Social impact? Do people want to be logged?

Where to put tests/performance results?



Easy hacks/New Developers

» Create easy/mediam/hard hacks, like libreoffice
IS doing
- Syscall wrappers?
- New instruction sets?

- Run valgrind in anger
valgrind -q --trace-children=yes bash

And fix anything that falls out?
e Have some GSOC ideas?



Darwin/MacOS and otherOS

 What do we need to continue to support it?

 What about other ports?

- Solaris, can it be integrated?

- Windows, what Is Iits status?
http://sourceforge.net/projects/valgrind4win



