

Valgrind BoF
Ideas, new features and directions

Everybody!

Valgrind developers and users are encouraged to
participate by joining the discussion. And of

course by kindly (or bitterly:) complain about bugs
you find important that are still Not YET solved for

that many years!?@!!!

Discuss any kind of possible improvement
(technical or functional) to Valgrind.

About Me

● Mark Wielaard <mjw@redhat.com>

● Maintainer of Valgrind in Fedora, Red Hat
Enterprise Linux and Developer Toolset.

● Done little Valgrind hacks here and there
● Doesn't have the full deep overview
● But did collect some questions and suggestions

About you

● Please participate, ask questions, do suggestions,
give opinions!

● Please take notes and report to the mailinglist <
valgrind-developers@lists.sourceforge.net >

● Lots of different stuff, ~5 minutes per “topic”.

– Both “big” and “small” issues.

– So lets speed up and slow down depending on interest

mailto:valgrind-developers@lists.sourceforge.net

Appearing/Disappearing Code

● Support stack traces containing IP of "disappeared" code e.g.
in memcheck, memory can be allocated by a piece of code that
has disappeared at the time the stacktrace has to be shown.

● Support build-ids (can maybe look them up offline)
https://fedoraproject.org/wiki/Releases/Feature
BuildId

● Better support compiled/JITted code. Allowing the JIT compiler
to indicate to Valgrind the link between the JITted code and the
source code. (See also GDB BoF, steal their code/design?)
– MONO had an interface hack/patch

● http://tirania.org/tmp/valgrind-mono.patch

Change the defaults?

● Revisit the default value of (some of) the
command line options
– Decrease helgrind redzone size from 16 to the

minimum needed.

– Change -keep-stacktraces=alloc-then-free
to alloc-and-free default

– Other relevant default options we should change?

XTree

● Implement a generalised "xtree"
● Massif has a data structure called an xtree. Basically, a bunch

of stack traces, represented in the form of a tree, where each
node of the tree contains the sum of all the memory size
allocated by the called functions.

● The idea is to generalise this data structure, so as to make it
usable in other contexts:
– use the generalised one to replace the massif one.

– also use it in memcheck (to allow massif like output from memcheck)

– maybe other uses, e.g. to collect and show events or calls to various
things, using a common infrastructure.

An interactive SQL relational
interface to Valgrind data structures
● https://github.com/mfragkoulis/PiCO_QL/tree/master/src/Valgrind-mod

● Marios Fragkoulis

https://github.com/mfragkoulis/PiCO_QL/tree/master/src/Valgrind-mod

Client Requests as SDT markers?

● SDT markers
https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation

● Used by SystemTap, gdb, perf.
– Source compatible with dtrace markers

● But is there anything wrong with Client
Requests in the first place?

https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation

Instant leak detector

● Modify memcheck to report the last leaked
pointer to a block.

● Integrate "omega" as a memcheck option or
omega as a separate tool.
http://www.brainmurders.eclipse.co.uk/omega.html

80 bit arithmetic on x86/AMD64

● Some complains because it surprises users.
● Is it an open problem? Would be too slow? Or

just work nobody has done yet? How much
work would it be?

VEX API redesign

● Currently geared toward the dynamic paradigm
● APIs do the whole process: lift, instrument,

optimize, finalize, instruction select, compile
back to binary.

● Issue for static analysis (PyVEX)
– Have to patch out half of LibVEX_Translate

● Yan already has some patches?

Cross-arch VEX/Valgrind

● VEX has some host-platform and guest-platform
homogeneity assumptions.
– example, compiled as-is on x86, the MIPS

translation code is broken due to the fact that neither
MIPSBE nor MIPSLE is defined.

● What would it take to make valgrind cross-arch?
– syscall layer

● How about starting with i686 on x86_64?

Which CPUID is it anyway?

● Valgrind isn't completely consistent in handling
host CPU capabilities vs VEX emulation
capabilities.
– What can we do to improve that?

● Make it user tunable?

VEX split lift-to-IR and compile-back

● VEX assumes that any platforms that it
implements are going to be lifted to IR and then
compiled back down.

● For static analysis we only need lifting.
● Partially supported arches?

Improve memcheck leak heuristics

● In 3.9.0, some heuristics were added to memcheck
to decrease the false positive rate of possible leaks
for c++ objects (such as std::string).

● Add more of such heuristics?
● And/or have a more flexible way to define

heuristics, e.g. using "user definable expressions"?
● Add a way to specify a stack trace to match for a

heuristic?

helgrind improvements

● Currently, in race conditions errors, locks are only
described by an address and their creation stack trace.
Add more info (when possible) based e.g. on
--read-var-info=yes

● Speed up helgrind 'mini stacktrace' capture avoid to
take duplicate stack traces? Or have a way to detect
only the top most IP has been updated since previous
stack trace?

● Suppressions entries for helgrind with matching the
stack trace of one or the other or both threads involved.

Making Valgrind multi-threaded

● parallelising Memcheck
● parallelising the rest of the framework
● Other tools

Valgrind and transactional memory

● Currently xbegin “fail early, fail often”
● Could we do something more interesting?
● Could we use tx in V itself?

Make Callgrind work sanely on ARM
(and PPC)

● The Callgrind algorithm to track call and return
is to be improved to work properly on these
platforms.

● Is there a way to make this better?
– E.g. by having a fast way working in most cases,

and rely on unwind info in the difficult cases. Can
we detect at instrumentation time that an instruction
is a difficult case?

Redo the JIT framework to reduce
baseline overheads

● Could we reuse some "compiler lib" (qemu tcg,
llvm or gcclib as code generator)?
– Could we reuse some "compiler lib" (qemu tcg, llvm

or gcclib as code generator)? Destroys startup
time?

● Any other suggestion to (significantly) improve
the speed of Valgrind JITted code?

Release/bugfixing strategy/policy

● README_DEVELOPERS_processes

● Timed minor releases (every X months)?
● Split SVN Valgrind/VEX

– Merge?

● GIT or Mercurial?

Packaging valgrind for distros

● handling patches (more frequent releases?)
● Suppressions (who should ship them?)

– Can we push it to other packages/libraries?

Website/Bugzilla/IRC

● valgrind.org
● Web site pages in svn?,

– So it can be updated by all developers with a patch as everything else

● Do we want a wiki?
– For Developer? For Users?

● Make sure bugzilla sends a mail to the developer mailing list when
there is a new bug/comment in a bug.
– Currently you have “watch” Julian.

● Have a log of irc so development ideas can be seen by all?
– Social impact? Do people want to be logged?

● Where to put tests/performance results?

Easy hacks/New Developers

● Create easy/mediam/hard hacks, like libreoffice
is doing
– Syscall wrappers?

– New instruction sets?

– Run valgrind in anger
valgrind -q --trace-children=yes bash

And fix anything that falls out?

● Have some GSOC ideas?

Darwin/MacOS and otherOS

● What do we need to continue to support it?

● What about other ports?
– Solaris, can it be integrated?

– Windows, what is its status?
http://sourceforge.net/projects/valgrind4win

