
The xpcc microcontroller framework
An efficient object-oriented approach to embedded software

development.

Niklas Hauser, Kevin Läufer
Roboterclub Aachen e. V.

FOSDEM 2014



Who? What?

@salkinium • @ekiwi



Motivation

Same task, different code!



What is xpcc?

An efficient object-oriented microcontroller
framework written in C++ that enables you to create
identical code for multiple targets.



Talk structure

• concepts and interfaces of xpcc

• external hardware drivers

• build system

• future work



Library overview and talk focus

generic

intermediate

direct access

Algorithms

Processing, Workflow

Communication, Protocols

External Hardware Drivers

Independent Peripheral Interfaces

Platform Specific Implementation



Visual appearance of microcontrollers

Black box with lots of pins

These pins are used for some form of Input/Output.



General Purpose Input/Output

class GpioInput
{

void setInput();
bool read();

}

class GpioOutput
{

void setOutput();
void set();
void reset();
void toggle();

}

Any platform should be capable of satisfying this
interface.



General Purpose Input/Output

Implementation using C-like function calls:
pinMode(12, OUTPUT);
digitalWrite(12, HIGH);

xpcc provides a customized class for each pin:
GpioOutputB4::setOutput();
GpioOutputB4::set();

Inlined code enables atomic GPIO operation.



General Purpose Input/Output

Simply connect alternate functions to pins:
GpioInputD0::connect(Uart0::Rx);
GpioOutputD1::connect(Uart0::Tx);

Type is checked at compile time:
GpioInputD1::connect(Spi::Miso); // Compiler Error!

Bonus: The code is your documentation!



Peripheral

GPIO

STM32F3XmegaATmega STM32F4 LPC11

All targets provide these GPIO methods.



Peripherals

UART SPI CANI2C GPIO

STM32F3XmegaATmega STM32F4 LPC11

Targets also satisfy other interfaces when available.



Interfaces

Declare what you want,
not how to get it.



Example: UART baudrate

Never set prescalers directly!
UBBR0 = 8; // baudrate?

Real runtime calculation result is unknown:
Serial.begin(115200); // actually 112300

(It also wastes time and program space.)



Example: UART baudrate

xpcc offers calculation at compile-time:
Uart::initialize<SystemClock, 115200>();

Calculated register values are stored in program
code.

Bonus #1: The code is your documentation!
Bonus #2: Plausibility check for free!
Bonus #3: No need to open a datasheet.



Example: UART baudrate

Declare your baudrate tolerance:
Uart::initialize<SystemClock, 115200,

xpcc::Tolerance::OnePercent>();

Using template magic, the compiler provides you
with the nearest alternative:
In ’static void xpcc::Tolerance::checkValueInTolerance()

[with long unsigned int reference = 112300ul;

long unsigned int actual = 115200ul;
short unsigned int tolerance = 10u]’:

The actual value is exceeding the tolerance of reference!



External hardware drivers

?

Can an external hardware driver be independent of
platform?

Yes. Think protocols, not platforms!



External hardware drivers

External Hardware Drivers

GPIOUART SPI CANI2C

These interfaces allow you to speak the protocols.



External hardware drivers

ThermometerBarometer Gyroscope

I2C

STM32F4 SoftwareATmega

• Drivers only talk with interfaces
• Truly platform-independent driver code
• Software implementations use GPIO classes!
Techporn Bonus: non-blocking, callback-based implementation



From the Outside

Black box with lots of pins

Everything is static.



Underneath the Surface

Everything is static.



Representing Peripherals



Representing Peripherals

class Timer14

class Usart3

class Spi2



Representing Peripherals

We want one static C++ class for every
peripheral!

• We need to know which device needs which
classes.



XML Device and Driver Files

stm32f407-i_v_z-e_g.xml

peripheral/uart/stm32/driver.xml

1 MB Flash 192 kB RAM Peripherals

ADC Clock SPI UART ...Linker

...

uart.hpp.in uart.cpp.in uart_base.hpp.in ...



Representing Peripherals

We want one static C++ class for every
peripheral!

• We need to know which device needs which
classes.

• We are developers, we are lazy, we want to avoid
duplicate code.



Jinja2 Templates

uart.cpp.in

uart1.cpp

uart2.cpp

uart3.cpp

...

uart.hpp.in

uart1.hpp

uart2.hpp

uart3.hpp

...



Jinja2 Templates

void
xpcc::stm32::Uart{{ id }}::write(uint8_t data)
{
%% if target is stm32f0 or target is stm32f3

{{ peripheral }}->TDR = data;
%% elif target is stm32f2 or target is stm32f4

{{ peripheral }}->DR = data;
%% endif
}



Build System

SCONS
Constructs using

with custom



Long Term Goal: Library Generator

Library Description

Peripherals

Graphics

Math

Sensors

Custom Library
based on xpcc



In the meantime ...

• use xpcc in your projects
• improve documentation
• add IC drivers
• add more peripheral drivers, improve existing
ones

• port to new platforms: Freescale K20, LPC,
Atmel SAM D20, MSP430



Support

Host OS

Boards

https://github.com/roboterclubaachen/xpcc

xpcc-dev@lists.rwth-aachen.de


