OSM data in MariaDB/MySQL
All the world in a few large tables
Well, almost ...

Hartmut Holzgraefe

SkySQL AB hartmut@skysql.com

February 1, 2014
1 MySQL, MariaDB and GIS

2 OpenStreetMap

3 osm2pgsql

4 Examples

5 The End ...
MySQL, MariaDB and GIS

1. MySQL, MariaDB and GIS
 - History
 - Current Status
 - Roadmap

2. OpenStreetMap

3. osm2pgsql

4. Examples

5. The End ...
First appeared in MySQL 4.1 (2004)

... with MBR relations only

Lab Release adds true spatial relations (200?)

MariaDB 5.3 GA with true spatial relations (2011)

MySQL 5.6 GA with true spatial relations (2013)

... to be continued ...
MBR is not enough

MBR CONTAINS()

True ST_CONTAINS()
Current Status

- Spatial relations work
- ... but the world is still flat (no projections)
- OK for many use cases
- ... but be aware of gotchas like DISTANCE()
- GEOMETRY types in all storage engines
- ... but only MyISAM has SPATIAL indexes
System Tables (spatial_ref_sys, geometry_columns, ...)

- Precision math calculations and storage
- Coordinate transformations / projections
- 3rd coordinate (e.g. for altitude)
- all spatial functions required by OGC
- spatial aware optimizer
... and beyond

- SPATIAL indexes in other storage engines
- 3D calculations
- client side support for GIS transformations
Openstreetmap

MySQL, MariaDB and GIS

OpenStreetMap
- Intro
- Core Data Model
- Data Access
- Data Import

osm2pgsql

Examples

The End ...
OpenStreetMap History

- founded in 2004 by Steve Coast
- data under open license (CC-BY-SA first, now ODBL)
- 1.5 million contributors
- 2 billion map nodes
- 200 million ways
- 2 million relations
- almost 4 billion GPX points
… and raw data

Raw map data can be used for other things, too:

- for routing
- for coverage checks
- for flight simulators
- for science
Core Data Model

Just three simple things

- Nodes (Points)
- Ways
- Relations
Nodes

Nodes describe a single point at a specific location using:

- A numeric ID
- Object version, Timestamp of last change, User
- Node coordinates
- Node attributes as key/value pairs
Ways form an open or closed line by connecting nodes, using:

- A numeric ID
- Object version, Timestamp of last change, User
- An ordered list of node IDs
- Way attributes as key/value pairs
Relations bundle objects to describe more complex relations, using:

- A numeric ID
- Object version, Timestamp of last change, User
- Ordered lists of member nodes, ways and sub-relations
- Optional member roles
- Attributes as key/value pairs
The main database is not exposed directly
Only one central instance, accessible via “The API”
API meant for editor applications only
Full data export once a week ("the planet")
Plus daily, hourly, minutely diffs
Two file formats for planets:
.osm XML based, usually bz2 compressed (32GB packed, 400GB unpacked)
.pbf compact binary format based on Google ProtoBuf (23GB)
Regional extracts available by 3rd parties, e.g. GeoFabrik.de
The raw data is not really suitable for most purposes, esp. rendering

Several import/preprocessing tools provide more convenient schemas, e.g. by

... only extracting certain attributes

... making a difference between ways and areas

... resolving relations into simpler objects

Besides osm2pgsql that I’m about to talk about in a minute there are also impOsm, ...
1. MySQL, MariaDB and GIS

2. OpenStreetMap

3. osm2pgsql
 - Block Diagram
 - Data Model Again
 - Adding MySQL Support
 - Performance

4. Examples

5. The End ...
osm2pgsql is a tool
- written in C
- with a small C++ part now
- reads OSM data
- preprocesses it
- stores results in relational tables
- originally in PostGIS only
Figure: osm2pgsql block diagram
- \textit{prefix_point} for single node POIs
- \textit{prefix_line} for linear 2D objects like roads, rivers, power lines ...
- \textit{prefix_roads} a subset of the above, optimizer for rendering
- \textit{prefix_polygon} objects covering an area: buildings, landuse, administrative borders ...
Adding MySQL Support

- turned out to be more tricky than thought
- some core parts directly called PostgreSQL functions
- a lot of general functionality was hidden in PostgreSQL specific modules

MySQL output module works, could be faster though
MySQL middle layer is “code complete” ...
... but crashes while processing relations :(
so for now imports are limited by RAM size
- imports currently take about 4-5 times as long
- ... as we have no direct equivalent to COPY
- osm2pgsql at less than 50% CPU only
- ... so switching to async API would be a 2x win already
- ... with multi-insert even more so
- index building is faster ...
- ... but may not be once we get I/O bound
- tables on disk are of similar size
select count(*)
 from nrw_point n
 join nrw_polygon p
 on st_contains(p.way,n.way)
where p.name = 'Bielefeld'
and n.amenity='post_box';
Examples

1. MySQL, MariaDB and GIS
2. OpenStreetMap
3. osm2pgsql
4. Examples
5. The End ...
MySQL, MariaDB and GIS

OpenStreetMap

osm2pgsql

Examples

The End ...
Contact hartmut@skysql.com

MariaDB GIS https://mariadb.com/kb/en/gis-functionality/

OpenStreetMap http://openstreetmap.org/

MapCompare http://mc.bbbike.org/mc/

RiverMap http://www.kompf.de/gps/rivermap.html

osm2pgsql https://wiki.openstreetmap.org/wiki/Osm2pgsql

My Code https://github.com/hholzgra/osm2pgsql/tree/devel-mysql

Table Files http://php-groupies.de/gis-data/ (soon)
Questions!
The End?
Or just the beginning?