
Talk proposal for the LLVM Track

David Tweed, The Azimuth Project

LLVM is a modular system of compiler compo-
nents with backends for most popular architectures.
It is primarily designed as a compiler construction
framework, but also provides facilities for Just-In-
Time (JIT) compilation1 of code. Although a lot of
interest has focused on the implementation of LLVM-
based compilers for ‘compiled ahead-of-time’ (AOT)
languages (eg, clang for C), one of the most exciting
uses is to generate code on-the-fly, taking advantage
of situation specific knowledge.

This proposal is for a short (approximately 30
minute) talk that falls somewhere between a case
study and a tutorial. While considering how LLVM
can be used for various means of boosting perfor-
mance in interactive exploratory programs, it will be
covering the aspects at an intermediate level, not dis-
cussing API at the detail level of a full tutorial.

The Read-Evaluate-Print-Loop (REPL) is recog-
nised as incredibly productive in many programming
language paradigms, eg, Python, Prolog, Haskell,
Smalltalk, logo, dc, etc. REPLs are particularly pop-
ular and effective for interactive number crunching
and data exploration, such as Matlab, Scilab, Octave
and Julia. Most of these employ some combination
of calling ‘canned routines’ in low-level languages and
JIT compilation in order to acheive acceptable per-
formance. Julia is particularly interesting as it uses
LLVM to JIT expressions within a REPL, but LLVM
provides a simple and effective way for JIT compila-
tion to be added to many more languages.

We follow a simple language crunching a large
dataset and the mechanisms and performance
changes from using LLVM’s:

1JITing is a term encompassing many things. Here ‘JIT
compilation’ is compiling a set of routines immediately before
execution when their inputs are known. We don’t discuss tech-
niques for re-compiling profiled hotspots during execution due
to LLVM’s poor fit.

1. Standard compiler tansformations. LLVM
provides many standard compiler optimizations
that can be effective even for interactive code.

2. Inlining. In static compilation it is tricky to
pick inlining opportunities that won’t uselessly
bloat the executable. JITing within a REPL,
worthwhile cases are much more clear..

3. Vectorization. There is wide variety in the vec-
tor instructions on various CPU models. When
JITing specific vectorization can be done.

4. Special instructions. Likewise other incredi-
bly niche, target-specific instructions can be cho-
sen when compiling at execution time.

5. Inline compression. For large datasets mem-
ory bandwidth is the first bottleneck. When JIT-
ing, compression instructions can be inserted.

6. Language specific passes. Languages are of-
ten designed to embody specific properties; these
can easily be utilized via a new LLVM pass.

7. Function specialisation. Uers often write
general code but only use specific cases. By
cloning and specializing functions into different
versions better performance can be acheived.

A particularly useful aspect of LLVM for implement-
ing this is the way that virtually all modifications can
be done at the level of LLVM-IR (which provides ‘in-
trinsics’ for the non arget-independent instructions).
Thus portability is obtained for various architectures,
an important facet of effective Open Source applica-
tions. The talk will show in moderate detail how the
above steps are implemented via LLVM, and prac-
tical results will be demonstrated using the BEST
dataset, demonstrating real-world speedups.

1


