LLVM Auto-Vectorization Linaro

Past
Present

Future

Renato Golin

Linaro
%

www.linaro.org

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Auto-Vectorization? -,,!.rm

 What is auto-vectorization?
* It's the art of detecting instruction-level parallelism,
* And making use of SIMD registers (vectors)
* To compute on a block of data, in parallel

Scalar Addition Vector Adition

Cycle 1 + Cycle 1 + + + +
Cycle 2 il J’ i l’ ¢
Cycle 3 + ----l
Cycle 4 +
(10 [12]
LIFI%E% www.linaro.org

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Auto-Vectorization? Linaro

 What is auto-vectorization?
* It can be done in any language
* But some are more expressive than others
 All you need is a sequence of repeated instructions

int a[N], b[N], c[N];
int a[N], bIN], c[N]; for (1..N/4, is=d) { int a[M], b[N], c[N]:
a[i+8] = b[1#8] #+ c[i+8];

for (1..N, i++) { ———— - - g1, e for (1..N/4, i+=4) {
1 = Bl41 + cT41: a[i+1] = b[i#1] #+ c[i#1]; - - .
: a[i] = b[1] + c[i]; a[is2] = b[is2] + c[is2]: : a[@..3] = b[8..3] + c[8..3];

a[i+3] = b[i+3] = c[i+3];
1

int a, b, c, d: int a. b, c. d:
o {Z i E} F —eessmmmp- if (x>8) {

{a.b} = {c,d} = {4,4};

=]
=T
fa

} ' }

www.linaro.orqg

Linaro
%

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

LLVM Auto-Vectorization Linaro

The Past

How we came to be...
Where did it all come from?

Linaro
l"n

www.linaro.org

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Past

_Linaro

* Up until 2012, there was only Polly (Tobias Grosser)

« which was hard to setup
« and only worked on very complicated cases

» Then, Hal Finkel introduced the BBVectorizer (Jan 2012)
» Basic-block only level vectorizer (no loops)
* Very aggressive, could create too many suffles
» Got a lot better over time, mostly due to the cost model

%%l = fsub double %Al, %Bl1
%X2 = fsub double %A2, %B2

%Y1l = call double @L1lvm.fma.fe4d(
%Y2 = call double @Llvm.fma.fe4(

%71 = fadd double %Y1, %B1
%72 = fadd double %¥2, %B2
%R = fmul double %71, %Z2

Linaro
%

——— X
e ;Y]

%271

N %71

- %71

o8]

11 <2 x double=

fadd =2 x double= %Y X1, v 2

rl = ex ctelement <2 x double= %7 2 8
r2 = ex ctelement <2 x double> %7 32 1
fmul do e ®Z1.v.rl, %Z1.v.r2

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Past Linaro

« Nadav introduced the Loop Vectorizer (Oct 2012)
* It could vectorize a few of the GCC's examples
* |t was split into Legality and Vectorization steps
* No cost information, no target information
 Single-block loops only

examplel:
int al256]1, b[2561, c[2561; examples:
fcgni]ii int a[M][NT;
! foo (int x) {
for (i=0; i<256; i++){ nt 1,7;
} alil = blil + cl1l; /* feature: support for multidimensional arrays */
} for (1=0; i<M: i++) {
for (j=0; j=<N; j++) {
alillj] = x;
¥
examplel2: induction: } }

for (1 =0; 1 < N; i++) {
ali]l = i;

}

www.linaro.orqg

Linaro
%

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Past _.!_inaro

* The cost model was born (Late 2012)
» VVectorization was then split into three stages:
 Legalization: can | do it?
e Cost: Is it worth it?
 Vectorization: create a new loop, maybe ditch the older
« X86 only at first

» Cost tables were generalized for ARM, then PPC
« Arnold and others added a lot of costs based on manuals
and benchmarks for ARM, x86, PPC
* It should work for all targets, though
* Reduced a lof of the regressions and enabled the vectorizer
to run at lower optimization levels, even at -Os

Linaro

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Past _.!_inaro

* Nadav introduced the SLP Vectorizer (Apr 2013)
» Stands for superword-level paralellism
« Same principle as BB-Vec, but bottom-up approach
» But faster to compile, with fewer regressions, more speedup
* It operates on multiple basic-blocks (trees, diamonds, cycles)
» Still doesn't vectorize function calls (like BB, Loop)

» Loop and SLP vectorizers enabled by default (-Os, -02, -0O3)
e -Oz is size-paranoid
* -O0 and -O1 are debug-paranoid
* Reports on x86 64 and ARM have shown it to be faster on
real applications, without producing noticeably bigger binaries
» Standard benchmarks also have shown the same thing

Linaro

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

LLVM Auto-Vectorization Linaro

The Present

What do we have today?

Linaro
%

www.linaro.org

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Present - Features w1310

» Supported syntax

e Loops with unknown trip count for (int i < start; i < end; ++1)
« Reductions for fin M];f’ n; ++1)
return sum; '
e |[f-Conversions fn;ft%gw[ti E[E]iii"f_n; ++i)
* Reverse Iterators o, e
. . . int fnn{intl'A, char *B, int n, int k) {
 Vectorization of Mixed Types for (int 1 =0z 1 <ni ++1)
}

e VVectorization of function calls for (int i = 0; i I= 1024; ++i)

f[i] = floorf(f[1i]);

See http://livm.org/docs/Vectorizers.html for more info.

www.linaro.orqg

Linaro
%

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Present - Features osUiele

« Supported syntax | |
* Runtime Checks of Pointers ofor (It s 054 < ns wep e mem e

A[i] *= B[i] + K;

i for (int i =0; i <n; ++)
* Inductions or (0t 1 =04 < n; 4+
int baz(int *A, int n) {

. . . return std::accumulate(A, A + n, B8);
e Pointer Induction Variables }

for (int i = 0; i < n; ++i)

 Scatter / Gather AL = Bl

struct { int A[l88], K, B[1l88]; } Foo;

int foo() {
for (int 1
]

 Global Structures Alias Analysis | Foo.Al

unsigned sum = @;
for (int i = 8; i = n; ++1)

* Partial unrolling during vectorization sun += A[i];

return sum;

= 0; i < 100; ++i)
= Foo.B[1i] + 1@0;

See http://livm.org/docs/Vectorizers.html for more info.

www.linaro.orqg

Linaro
%

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Present - Validation ...!—inal‘o

« CanVectorize()
 Multi-BB loops must be able to if-convert
» Exit count calculated with Scalar Evolution of induction
* Will call canVectorizelnstrs, canVectorizeMemory

» CanVectorizelnstrs()
e Checks induction strides, wrap-around cases
« Checks special reduction types (add, mul, and, etc)

« CanVectorizeMemory()
» Checks for simple loads/stores (or annotated parallel)
* Checks for dependent access, overlap, read/write-only loop
* Adds run-time checks if possible

Linaro

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Li
Present - Cost winnans
* Vectorization Factor
» Make sure target supports SIMD
» Detect widest type / register, number of lanes

» -Os avoids leaving the tail loop (ex. Run-time checks)
« Calculates cost of scalar and all possible vector widths

* Unroll Factor
e To remove cross-iteration deps in reductions, or
* To increase loop-size and reduce overhead
* But not under -Os/-Oz

* If not beneficial, and not -Os, try to, at least, unroll the loop

Linaro

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Present - Vectorization Linaro

* Creates an empty loop

« ForEach BasicBlock in the Loop:
* Widens instructions to <VF x type>
* Handles multiple load/stores
* Finds known functions with vector types
e If unsupported, scalarizes (code bloat, performance hit)

 Handles PHI nodes
» Loops over all saved PHls for inductions and reductions
» Connects the loop header and exit blocks

 Validates
« Removes old loop, cleans up the new blocks with CSE
» Update dominator tree information, verify blocks/function

..!_IFIE:ITD www.linaro.org

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

LLVM Auto-Vectorization Linaro

The Future

What will come to be?

Linaro
%

www.linaro.org

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Future — A simple loop w1310

* Vectorizing this loop is not trivial...

for (i..n/3) {
a++ = b++ + I;
a++ = b+ + J;
a++ = b+ + K;

}

* |t requires a handfull of new optimizations:
» Detection of non-unit strided access via special unrolling
» Detection of interleaved access via load/store grouping
» Similarities between pointer and array access
* Possible re-rolling loops to expose parallelism
* Reduction loops should also be recognized...

Linaro

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Future — Strided Access sinare

* LLVM vectrorizer still doesn't have non-unit stride support

| b[0] || b[1] |Fb[2] | | b[3] || b[4] | b[S]
for (i..N/3) {

a[3*i] = b[3*i]; {a, +, 35}y [1@
a[3*i+1] = b[3*i+1]; {a+s, +, 35} @
a[3*i+2] = b[3*1+2]; {a+25, +, 35} pumm

} o [

« Some strided access can be exposed with loop re-roller

for (i..M/3) {

a[3*1i] = b[3*1] + K; for (i..M) {
al[3*i+1] = b[3*1i+1] + K; e a[i]l = b[i] + K;
a[3*i+2] = b[3*1+2] + K; 1

}

www.linaro.org

Linaro
.

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Future — Strided Access ﬁLinam

 But if the operations are not the same, we can't re-roll

for (1i..N/3) {

a[3*1i] = b[3*1] + I;
a[3*1+1] = b[3*1+1] + J;
a[3*1+2] = b[3*1+2] + K;
}

* We have to unroll the loop to find interleaved access

for (i..N/3) {

a[3+i] = b[3) + 1, b[0] || b[1] | Bf2] | | b[3] || b[4] | B[5]
a[3#*i+3] = b[3*1i+3] + I;
a[3*i+6] = b[3*i+6] + I;
a[3#*i+9] = b[3*i+9] + I;
a[3*i+1] = b[3*i+1] + 1;
a[3*i+4] = b[3*i+4] + 1;
a[3*i+7] = b[3*1+7] + 1;
al[3*i+18] = b[3*i+10] + J;
a[3*i+2] = b[3*1i+2] + K;
a[3*i+5] = b[3*1+5] + K;
a[3*i+8] = b[3*i+8] + K;
al[3*i+11] = b[3*i+11] + K;

www.linaro.org

Linaro
F

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Future — Strided Access Linare

* And finally, we'll need to teach the vectorizer the relationship
between pointer access and array access:

for (i..N/3) { for (i..N/3) {

++ = b++ + K; a[3*1] = b[3*1] + K;
T K- = a[3*i+1] = b[3*i+1] + K
a:: _ bii I K- a[3*1+2] = b[3*i+2] + K

Yo ' }

 And about reductions:

for (i..N/3) {
a+= h[3*] + I;
a += b[3*i+1] + J;
a += b[3*i+2] + K;
}

return a;

Linaro
%

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Thanks & Questions -_-!‘inam

* Thanks to:
« Nadav Rotem
* Arnold Schwaighofer
 Hal Finkel
* Tobias Grosser
e Aart J.C. Bik's “The Software Vectorization Handbook’

e Questions?

Linaro
l;'n

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

Li
References ns nans

 LLVM Sources
e lib/Transform/Vectorize/LoopVectorize.cpp
e lib/Transform/Vectorize/SLPVectorizer.cpp
* lib/Transform/Vectorize/BBVectorize.cpp

 LLVM vectorizer documentation
* http://llvm.org/docs/Vectorizers.html

 GCC vectorizer documentation
* http://gcc.gnu.org/projects/tree-ssa/vectorization.htmi

 Auto-Vectorization of Interleaved Data for SIMD
* http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6457

Linaro
l;'n

www.linaro.orqg

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

