
www.linaro.org

LLVM Auto-Vectorization

Past

Present

 Future

Renato Golin

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

● What is auto-vectorization?
● It's the art of detecting instruction-level parallelism,
● And making use of SIMD registers (vectors)
● To compute on a block of data, in parallel

Auto-Vectorization?

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Auto-Vectorization?

● What is auto-vectorization?
● It can be done in any language
● But some are more expressive than others
● All you need is a sequence of repeated instructions

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

The Past

How we came to be...
Where did it all come from?

LLVM Auto-Vectorization

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Past

● Up until 2012, there was only Polly (Tobias Grosser)
● which was hard to setup
● and only worked on very complicated cases

● Then, Hal Finkel introduced the BBVectorizer (Jan 2012)
● Basic-block only level vectorizer (no loops)
● Very aggressive, could create too many suffles
● Got a lot better over time, mostly due to the cost model

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

● Nadav introduced the Loop Vectorizer (Oct 2012)
● It could vectorize a few of the GCC's examples
● It was split into Legality and Vectorization steps
● No cost information, no target information
● Single-block loops only

Past

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

● The cost model was born (Late 2012)
● Vectorization was then split into three stages:

● Legalization: can I do it?
● Cost: Is it worth it?
● Vectorization: create a new loop, maybe ditch the older

● X86 only at first

● Cost tables were generalized for ARM, then PPC
● Arnold and others added a lot of costs based on manuals

and benchmarks for ARM, x86, PPC
● It should work for all targets, though
● Reduced a lof of the regressions and enabled the vectorizer

to run at lower optimization levels, even at -Os

Past

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

● Nadav introduced the SLP Vectorizer (Apr 2013)
● Stands for superword-level paralellism
● Same principle as BB-Vec, but bottom-up approach
● But faster to compile, with fewer regressions, more speedup
● It operates on multiple basic-blocks (trees, diamonds, cycles)
● Still doesn't vectorize function calls (like BB, Loop)

● Loop and SLP vectorizers enabled by default (-Os, -O2, -O3)
● -Oz is size-paranoid
● -O0 and -O1 are debug-paranoid
● Reports on x86_64 and ARM have shown it to be faster on

real applications, without producing noticeably bigger binaries
● Standard benchmarks also have shown the same thing

Past

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

The Present

What do we have today?

LLVM Auto-Vectorization

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Present - Features
● Supported syntax

● Loops with unknown trip count

● Reductions

● If-Conversions

● Reverse Iterators

● Vectorization of Mixed Types

● Vectorization of function calls

See http://llvm.org/docs/Vectorizers.html for more info.

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Present - Features
● Supported syntax

● Runtime Checks of Pointers

● Inductions

● Pointer Induction Variables

● Scatter / Gather

● Global Structures Alias Analysis

● Partial unrolling during vectorization

See http://llvm.org/docs/Vectorizers.html for more info.

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Present - Validation

● CanVectorize()
● Multi-BB loops must be able to if-convert
● Exit count calculated with Scalar Evolution of induction
● Will call canVectorizeInstrs, canVectorizeMemory

● CanVectorizeInstrs()
● Checks induction strides, wrap-around cases
● Checks special reduction types (add, mul, and, etc)

● CanVectorizeMemory()
● Checks for simple loads/stores (or annotated parallel)
● Checks for dependent access, overlap, read/write-only loop
● Adds run-time checks if possible

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Present - Cost

● Vectorization Factor
● Make sure target supports SIMD
● Detect widest type / register, number of lanes
● -Os avoids leaving the tail loop (ex. Run-time checks)
● Calculates cost of scalar and all possible vector widths

● Unroll Factor
● To remove cross-iteration deps in reductions, or
● To increase loop-size and reduce overhead
● But not under -Os/-Oz

● If not beneficial, and not -Os, try to, at least, unroll the loop

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Present - Vectorization

● Creates an empty loop

● ForEach BasicBlock in the Loop:
● Widens instructions to <VF x type>
● Handles multiple load/stores
● Finds known functions with vector types
● If unsupported, scalarizes (code bloat, performance hit)

● Handles PHI nodes
● Loops over all saved PHIs for inductions and reductions
● Connects the loop header and exit blocks

● Validates
● Removes old loop, cleans up the new blocks with CSE
● Update dominator tree information, verify blocks/function

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

The Future

What will come to be?

LLVM Auto-Vectorization

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Future – A simple loop

● Vectorizing this loop is not trivial...

● It requires a handfull of new optimizations:
● Detection of non-unit strided access via special unrolling
● Detection of interleaved access via load/store grouping
● Similarities between pointer and array access
● Possible re-rolling loops to expose parallelism
● Reduction loops should also be recognized...

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Future – Strided Access

● LLVM vectrorizer still doesn't have non-unit stride support

● Some strided access can be exposed with loop re-roller

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

● But if the operations are not the same, we can't re-roll

● We have to unroll the loop to find interleaved access

Future – Strided Access

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

● And finally, we'll need to teach the vectorizer the relationship
between pointer access and array access:

 =

● And about reductions:

Future – Strided Access

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

Thanks & Questions

● Thanks to:
● Nadav Rotem
● Arnold Schwaighofer
● Hal Finkel
● Tobias Grosser
● Aart J.C. Bik's “The Software Vectorization Handbook”

● Questions?

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

www.linaro.org

References

● LLVM Sources
● lib/Transform/Vectorize/LoopVectorize.cpp
● lib/Transform/Vectorize/SLPVectorizer.cpp
● lib/Transform/Vectorize/BBVectorize.cpp

● LLVM vectorizer documentation
● http://llvm.org/docs/Vectorizers.html

● GCC vectorizer documentation
● http://gcc.gnu.org/projects/tree-ssa/vectorization.html

● Auto-Vectorization of Interleaved Data for SIMD
● http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6457

file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/
file:///home/rengolin/Documents/Presentations/LLVM/CambridgeLLVMDay-2013/

