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MAJOR	  GOALS	  OF	  SNIPER	  

•  What	  will	  node	  performance	  look	  like	  for	  
next-‐generaUon	  systems?	  
–  Intel	  Xeon,	  Xeon	  Phi,	  etc.	  

•  What	  opUmizaUons	  can	  we	  make	  for	  these	  
systems?	  
– So[ware	  OpUmizaUons	  
– Hardware	  /	  So[ware	  co-‐design	  

•  How	  is	  my	  applicaUon	  performing?	  
– Detailed	  insight	  into	  applicaUon	  performance	  
on	  today’s	  systems	  
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OPTIMIZING	  TOMORROW’S	  SOFTWARE	  

•  Design	  tomorrow’s	  processor	  	  
using	  today’s	  hardware	  

•  OpUmize	  tomorrow’s	  so[ware	  for	  tomorrow’s	  
processors	  

•  SimulaUon	  is	  one	  promising	  soluUon	  
– Obtain	  performance	  characterisUcs	  	  
for	  new	  architectures	  

– Architectural	  exploraUon	  
– Early	  so[ware	  opUmizaUon	  
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WHY	  CAN’T	  I	  JUST	  …	  	  

use	  performance	  counters?	  
– perf	  stat,	  perf	  record	  

	  

	  
It	  can	  be	  difficult	  to	  see	  exactly	  where	  the	  problems	  are	  
–  Not	  all	  cache	  misses	  are	  alike	  –	  latency	  macers	  
– Modern	  out-‐of-‐order	  processors	  can	  overlap	  misses	  
–  Both	  core	  and	  cache	  performance	  macers	  
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use	  Cachegrind?	  



NODE-‐COMPLEXITY	  IS	  INCREASING	  

	  
•  Significant	  HPC	  node	  architecture	  changes	  
–  Increases	  in	  core	  counts	  

•  More,	  lower-‐power	  cores	  (for	  energy	  efficiency)	  
–  Increases	  in	  thread	  (SMT)	  counts	  
–  Cache-‐coherent	  NUMA	  

•  OpUmizing	  for	  efficiency	  
– How	  do	  we	  analyze	  our	  current	  so[ware?	  
– How	  do	  we	  design	  our	  next-‐generaUon	  so[ware?	  
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TRENDS	  IN	  PROCESSOR	  DESIGN:	  CORES	  

Number	  of	  cores	  per	  node	  is	  increasing	  
– 2001:	  Dual-‐core	  POWER4	  
– 2005:	  Dual-‐core	  AMD	  Opteron	  
– 2011:	  10-‐core	  Intel	  Xeon	  Westmere-‐EX	  
– 2012:	  Intel	  MIC	  Knights	  Corner	  (60+	  cores)	  
– 2013:	  Intel	  MIC	  Knights	  Landing	  announced1	  
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Westmere-‐EX,	  Source:	  Intel	   Xeon	  Phi,	  Source:	  Intel	  
1hcp://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17/	  
	  	  intel-‐powers-‐the-‐worlds-‐fastest-‐supercomputer-‐reveals-‐new-‐and-‐future-‐high-‐performance-‐compuUng-‐technologies	  



MANY	  ARCHITECTURE	  OPTIONS	  
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UPCOMING	  CHALLENGES	  

•  Future	  systems	  will	  be	  diverse	  
–  Varying	  processor	  speeds	  
–  Varying	  failure	  rates	  for	  different	  components	  
–  Homogeneous	  applicaUons	  show	  heterogeneous	  performance	  

•  So[ware	  and	  hardware	  soluUons	  are	  needed	  to	  
solve	  these	  challenges	  
–  Handle	  heterogeneity	  (reacUve	  load	  balancing)	  
–  Handle	  fault	  tolerance	  
–  Improve	  power	  efficiency	  at	  the	  algorithmic	  level	  

(extreme	  data	  locality)	  

•  Hard	  to	  model	  accurately	  with	  analyUcal	  models	  
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FAST	  AND	  ACCURATE	  SIMULATION	  IS	  NEEDED	  

•  EvaluaUng	  current	  so[ware	  on	  current	  hardware	  is	  
difficult	  
–  Performance	  counters	  do	  not	  provide	  enough	  insight	  

•  SimulaUon	  use	  cases	  
–  Pre-‐silicon	  so[ware	  opUmizaUon	  
– Architecture	  exploraUon	  

•  Cycle-‐accurate	  simulaUon	  is	  too	  slow	  for	  exploring	  
mulU/many-‐core	  design	  space	  and	  so[ware	  

•  Key	  quesUons	  
–  Can	  we	  raise	  the	  level	  of	  abstracUon?	  
– What	  is	  the	  right	  level	  of	  abstracUon?	  
– When	  to	  use	  these	  abstracUon	  models?	  
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SNIPER:	  A	  FAST	  AND	  ACCURATE	  SIMULATOR	  

•  Hybrid	  simulaUon	  approach	  
– AnalyUcal	  interval	  core	  model	  
– Micro-‐architecture	  structure	  simulaUon	  

•  branch	  predictors,	  caches	  (incl.	  coherency),	  NoC,	  etc.	  
•  Hardware-‐validated,	  Pin-‐based	  
•  Models	  mulU/many-‐cores	  running	  mulU-‐
threaded	  and	  mulU-‐program	  workloads	  

•  Parallel	  simulator	  scales	  with	  the	  number	  of	  
simulated	  cores	  

•  Available	  at	  http://snipersim.org	  
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TOP	  SNIPER	  FEATURES	  
•  Interval	  Model	  
•  MulU-‐threaded	  ApplicaUon	  Sampling	  
•  CPI	  Stacks	  and	  InteracUve	  VisualizaUon	  
•  Parallel	  MulUthreaded	  Simulator	  
•  x86-‐64	  and	  SSE2	  support	  
•  Validated	  against	  Core2,	  Nehalem	  
•  Thread	  scheduling	  and	  migraUon	  
•  Full	  DVFS	  support	  
•  Shared	  and	  private	  caches	  
•  Modern	  branch	  predictor	  
•  Supports	  pthreads	  and	  OpenMP,	  TBB,	  OpenCL,	  MPI,	  …	  
•  SimAPI	  and	  Python	  interfaces	  to	  the	  simulator	  
•  Many	  flavors	  of	  Linux	  supported	  (Redhat,	  Ubuntu,	  etc.)	  
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SNIPER	  LIMITATIONS	  

•  User-‐level	  
– Not	  the	  best	  match	  for	  workloads	  with	  significant	  OS	  
involvement	  

•  FuncUonal-‐directed	  
– No	  simulaUon	  /	  cache	  accesses	  along	  false	  paths	  

•  High-‐abstracUon	  core	  model	  
– Not	  suited	  to	  model	  all	  effects	  of	  core-‐level	  changes	  
–  Perfect	  for	  memory	  subsystem	  or	  NoC	  work	  

•  x86	  only	  
•  But	  …	  is	  a	  perfect	  match	  for	  HPC	  evaluaUon	  
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SNIPER	  HISTORY	  
•  November,	  2011:	  SC’11	  paper,	  first	  public	  release	  
•  March	  2012,	  version	  2.0:	  MulU-‐program	  workloads	  
•  May	  2012,	  version	  3.0:	  Heterogeneous	  architectures	  
•  November	  2012,	  version	  4.0:	  Thread	  scheduling	  and	  migraUon	  
•  April	  2013,	  version	  5.0:	  MulU-‐threaded	  applicaUon	  sampling	  
•  June	  2013,	  version	  5.1:	  SuggesUons	  for	  opUmizaUon	  visualizaUon	  
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•  September	  2013,	  
version	  5.2:	  
	  MESI/F,	  2-‐level	  TLBs,	  
	  Python	  scheduling	  

•  Today:	  700+	  downloads	  
from	  60	  countries	  



HTTP://WWW.SNIPERSIM.ORG	  
SATURDAY,	  FEBRUARY	  1ST,	  2013	  

FOSDEM	  2014	  –	  HPC	  DEVROOM	  –	  BRUSSELS,	  BRLGIUM	  

THE	  SNIPER	  MULTI-‐CORE	  SIMULATOR	  
VISUALIZATION	  



Sniper	  generates	  quite	  a	  few	  staUsUcs,	  
but	  only	  with	  text	  is	  it	  difficult	  to	  understand	  
performance	  details	  

Text	  output	  from	  Sniper	  (sim.stats)	  
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VISUALIZATION	  



CYCLE	  STACKS	  

•  Where	  did	  my	  cycles	  go?	  
•  CPI	  stack	  
– Cycles	  per	  instrucUon	  
– Broken	  up	  in	  components	  

•  Normalize	  by	  either	  
– Number	  of	  instrucUons	  (CPI	  stack)	  
– ExecuUon	  Ume	  (Ume	  stack)	  

•  Different	  from	  miss	  rates:	  	  
cycle	  stacks	  directly	  quanUfy	  	  
the	  effect	  on	  performance	  
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CYCLE	  STACKS	  FOR	  PARALLEL	  APPLICATIONS	  

By	  thread:	  heterogeneous	  behavior	  	  
in	  a	  homogeneous	  applicaUon?	  
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USING	  CYCLE	  STACKS	  TO	  EXPLAIN	  SCALING	  
BEHAVIOR	  
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USING	  CYCLE	  STACKS	  TO	  EXPLAIN	  SCALING	  
BEHAVIOR	  
•  Scale	  input:	  applicaUon	  becomes	  DRAM	  bound	  
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USING	  CYCLE	  STACKS	  TO	  EXPLAIN	  SCALING	  
BEHAVIOR	  
•  Scale	  input:	  applicaUon	  becomes	  DRAM	  bound	  
•  Scale	  core	  count:	  sync	  losses	  increase	  to	  20%	  
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VIZ:	  CYCLES	  STACKS	  IN	  TIME	  
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VIZ:	  ENERGY	  OUTPUT	  OVER	  TIME	  
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3D	  VISUALIZATION:	  IPC	  VS.	  TIME	  VS.	  CORE	  



ARCHITECTURE	  TOPOLOGY	  VISUALIZATION	  

•  System	  topology	  informaUon	  
– With	  IPC/MPKI/APKI	  stats	  for	  each	  component	  

24	  



SUGGESTIONS	  FOR	  OPTIMIZATION:	  
	  INSTRUCTIONS	  VS.	  TIME	  PLOT	  
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Expected	  
trends	  

Outlying	  funcUons	  
(more	  Ume	  per	  insn)	  



SUGGESTIONS	  FOR	  OPTIMIZATION:	  
	  ROOFLINE	  MODEL	  
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Peak	  memory	  
bandwidth	  

Peak	  FP	  
performance	  

S.	  Williams,	  A.	  Waterman,	  and	  D.	  A.	  Pacerson,	  “Roofline:	  An	  insightul	  visual	  performance	  model	  
for	  mulUcore	  architectures,”	  CommunicaUons	  of	  the	  ACM,	  vol.	  52,	  no.	  4,	  pp.	  65–76,	  Apr.	  2009.	  
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H/W	  UNDER/OVERSUBSCRIPTION	  
•  Main	  idea:	  

–  For	  Xeon-‐Phi-‐style	  cores,	  cache	  performance	  is	  the	  biggest	  
indicator	  of	  performance	  

•  Each	  core	  has	  a	  private	  cache	  hierarchy	  
–  Private	  L1	  +	  Private	  L2	  

•  Can	  access	  other	  L2s	  via	  coherency	  
•  Each	  applicaUon	  has	  its	  own	  cache	  scaling	  characterisUcs	  

–  We	  see	  cache	  requirements	  both	  increasing,	  and	  decreasing	  per	  
core	  
•  Increasing:	  globally	  shared	  working	  set	  
•  Decreasing:	  data	  is	  parUUoned	  per	  core	  

•  By	  controlling	  the	  core/thread	  count	  we	  can	  opUmize	  
placement	  
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POWER-‐AWARE	  HW/SW	  CO-‐OPTIMIZATION	  
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•  Hooked	  up	  McPAT	  (MulU-‐Core	  Power,	  Area,	  Timing	  framework)	  to	  
Sniper’s	  output	  staUsUcs	  

•  Evaluate	  different	  architecture	  direcUons	  (45nm	  to	  22nm)	  with	  
near-‐constant	  area	  

•  Compare	  performance,	  energy	  efficiency	  

baseline:	  2x	  quad-‐core	  

8	  cores	  
16	  cores,	  no	  L3,	  stacked	  DRAM	  

16	  slow	  cores	   16	  thin	  cores	  

core	  
cache	  

[Heirman	  et	  al.,	  PACT	  2012]	  



POWER-‐AWARE	  HW/SW	  CO-‐OPTIMIZATION	  

•  Heat	  transfer:	  stencil	  on	  regular	  grid	  
–  Used	  in	  the	  ExaScience	  Lab	  as	  component	  of	  Space	  Weather	  modeling	  
–  Important	  kernel,	  part	  of	  Berkeley	  Dwarfs	  (structured	  grid)	  

•  Improve	  memory	  locality:	  Uling	  over	  mulUple	  Ume	  steps	  
–  Trade	  off	  locality	  with	  redundant	  computaUon	  
–  OpUmum	  depends	  on	  relaUve	  cost	  (performance	  &	  energy)	  

of	  computaUon,	  data	  transfer	  à	  requires	  integrated	  simulator	  

30	  

compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-e⌅cient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of
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Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].
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Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology
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tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
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organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of
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Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].
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Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology
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(b) Energy e⌅ciency (simulated time steps per Joule)
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Figure 9: Hardware/software co-design for the heat benchmark when optimizing for performance and energy
e�ciency: four architecture design points are considered while varying software parameters such as tile size
(see legend) and arithmetic intensity (horizontal axes).

for performance and power to explore these trade-o�s and
hardware/software interactions.

7.3 Co-design analysis
Figure 9 plots the simulation results for hard-

ware/software co-design for the heat benchmark application.
The grid domain is 4096�4096 elements. This domain is
split up into square tiles measuring between 32 and 512 data
points on each side. The complete domain is 128 MB in total
and does not fit in the last-level cache for any of the archi-
tectures considered, so tiles always have to be loaded from
main memory. The number of time steps performed on each
tile before moving on to the next one varies between 1 and
65 steps. The graphs plot the achieved number of time steps
per second, or per Joule of consumed energy, as a function of
arithmetic intensity. The performance graphs in Figure 9(a)
follow the basic roofline model from Figure 8: initially, in-
creasing the number of time steps improves performance,
which later falls back once the amount of redundant com-
putation becomes too high. Additionally, each architecture
has an optimal tile size which maximizes data reuse while
still fitting in the cache. For example, the 8-core design point
reach a performance level of around 150 simulated time steps
per second, using a tile size of 128�128. The working set of
this application is two tiles worth of data, corresponding to
the previous and current time steps. At one double-precision
floating-point number or 8 bytes per element, the working
set of 256 KB for the 1282-sized tile fits in a core’s private
512 KB L2 cache, whereas for the larger 2562 tiles it does
not — which makes performance significantly lower than
that predicted by the roofline model. The three other ar-
chitectures, which have an L2 cache of only 256 KB, reach
their optimal performance using the smaller 642 tiles.

If we consider the e�ect of arithmetic intensity on energy
rather than performance, we see that generally the optimum
has shifted towards the left, meaning that less redundant
work — and a slightly increased access rate to main mem-

ory — is preferred. This is because the ratio between access
times of caches and DRAM is very high, making the perfor-
mance aspect of more redundant work cheap when compared
to extra DRAM accesses. On the other hand, when compar-
ing the energy cost of DRAM accesses versus that of extra
computation, the ratio is lower which makes the relative cost
of the redundant work higher. Note that this extra cost con-
sists of not just extra floating-point operations, which are in
themselves very cheap (in the order of 0.5 nJ per double-
precision operation, vs. 100 nJ per DRAM access1) but
also the cost of extra instructions flowing through all stages
of the out-of-order pipeline, extra cache accesses, etc. (In
Figure 5, floating-point ALU energy represents only a small
fraction of total core energy.)

When considering performance alone, the 3D architecture
clearly wins for this benchmark. The additional bandwidth
of the 3D stacked memory allows for a steeper performance
slope in the leftmost part of the performance graph, while
the availability of 16 full-sized cores results in the highest
peak performance across all architecture design points con-
sidered. Yet, tiles have to be kept small enough such that
they fit in L2 cache; this architecture does not have an L3
cache so the cost of L2 misses, which become significant
with tile sizes larger than 642, is much higher here than in
the other architectures.

On the other hand, the low-frequency architecture, while
being less high-performance than both the 8-core and 3D
design points, reaches the highest energy e⌅ciency. Because
this application scales fairly good with core count, and the
power envelope of the low-frequency chip is still modest, one
could even consider another doubling of the number of cores
which should almost double performance at very little addi-
tional cost in energy.

1According to the relevant component in the dynamic en-
ergy stacks computed by Sniper/McPAT, scaled by the num-
ber of FP operations or DRAM accesses throughout the
benchmark, respectively.

•  Match	  Ule	  size	  to	  L2	  size,	  find	  opUmum	  between	  locality	  
and	  redundant	  work	  –	  depending	  on	  their	  (performance/
energy)	  cost	  

•  Isolated	  opUmizaUon:	  
–  Fix	  HW	  architecture,	  explore	  SW	  parameters	  
–  Fix	  SW	  parameters,	  explore	  HW	  architecture	  

•  Co-‐opUmizaUon	  yields	  1.66x	  more	  performance,	  or	  1.25x	  
more	  energy	  efficiency,	  than	  isolated	  opUmizaUon	  
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