
HTTP://WWW.SNIPERSIM.ORG	
SATURDAY,	 FEBRUARY	 1ST,	 2014	

FOSDEM	 2014	 –	 HPC	 DEVROOM	 –	 BRUSSELS,	 BELGIUM	

HPC	 NODE	 PERFORMANCE	 AND	 POWER	
SIMULATION	 WITH	 THE	 SNIPER	 MULTI-‐CORE	

SIMULATOR	

TREVOR	 E.	 CARLSON,	
WIM	 HEIRMAN,	 LIEVEN	 EECKHOUT	

MAJOR	 GOALS	 OF	 SNIPER	

•  What	 will	 node	 performance	 look	 like	 for	
next-‐generaUon	 systems?	
–  Intel	 Xeon,	 Xeon	 Phi,	 etc.	

•  What	 opUmizaUons	 can	 we	 make	 for	 these	
systems?	
– So[ware	 OpUmizaUons	
– Hardware	 /	 So[ware	 co-‐design	

•  How	 is	 my	 applicaUon	 performing?	
– Detailed	 insight	 into	 applicaUon	 performance	
on	 today’s	 systems	

2	

OPTIMIZING	 TOMORROW’S	 SOFTWARE	

•  Design	 tomorrow’s	 processor	 	
using	 today’s	 hardware	

•  OpUmize	 tomorrow’s	 so[ware	 for	 tomorrow’s	
processors	

•  SimulaUon	 is	 one	 promising	 soluUon	
– Obtain	 performance	 characterisUcs	 	
for	 new	 architectures	

– Architectural	 exploraUon	
– Early	 so[ware	 opUmizaUon	

3	

WHY	 CAN’T	 I	 JUST	 …	 	

use	 performance	 counters?	
– perf	 stat,	 perf	 record	

	

	
It	 can	 be	 difficult	 to	 see	 exactly	 where	 the	 problems	 are	
–  Not	 all	 cache	 misses	 are	 alike	 –	 latency	 macers	
– Modern	 out-‐of-‐order	 processors	 can	 overlap	 misses	
–  Both	 core	 and	 cache	 performance	 macers	

4	

use	 Cachegrind?	

NODE-‐COMPLEXITY	 IS	 INCREASING	

	
•  Significant	 HPC	 node	 architecture	 changes	
–  Increases	 in	 core	 counts	

•  More,	 lower-‐power	 cores	 (for	 energy	 efficiency)	
–  Increases	 in	 thread	 (SMT)	 counts	
–  Cache-‐coherent	 NUMA	

•  OpUmizing	 for	 efficiency	
– How	 do	 we	 analyze	 our	 current	 so[ware?	
– How	 do	 we	 design	 our	 next-‐generaUon	 so[ware?	

5	

Source:	 Wikimedia	 Commons	

TRENDS	 IN	 PROCESSOR	 DESIGN:	 CORES	

Number	 of	 cores	 per	 node	 is	 increasing	
– 2001:	 Dual-‐core	 POWER4	
– 2005:	 Dual-‐core	 AMD	 Opteron	
– 2011:	 10-‐core	 Intel	 Xeon	 Westmere-‐EX	
– 2012:	 Intel	 MIC	 Knights	 Corner	 (60+	 cores)	
– 2013:	 Intel	 MIC	 Knights	 Landing	 announced1	

6	

Westmere-‐EX,	 Source:	 Intel	 Xeon	 Phi,	 Source:	 Intel	
1hcp://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17/	
	 	 intel-‐powers-‐the-‐worlds-‐fastest-‐supercomputer-‐reveals-‐new-‐and-‐future-‐high-‐performance-‐compuUng-‐technologies	

MANY	 ARCHITECTURE	 OPTIONS	

L2	

L1I	 L1
D	 L1I	 L1

D	

L2	

L1I	 L1
D	 L1I	 L1

D	

L3	

L2	

L1I	 L1
D	 L1I	 L1

D	

L2	

L1I	 L1
D	 L1I	 L1

D	

L3	

L2	

L1I	 L1
D	 L1I	 L1

D	

L2	

L1I	 L1
D	 L1I	 L1

D	

L3	

L2	

L1I	 L1
D	 L1I	 L1

D	

L2	

L1I	 L1
D	 L1I	 L1

D	

L3	

DRAM	

7	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

L1I	 L1
D	

L2	

NoC	

L1I	 L1
D	

L2	

UPCOMING	 CHALLENGES	

•  Future	 systems	 will	 be	 diverse	
–  Varying	 processor	 speeds	
–  Varying	 failure	 rates	 for	 different	 components	
–  Homogeneous	 applicaUons	 show	 heterogeneous	 performance	

•  So[ware	 and	 hardware	 soluUons	 are	 needed	 to	
solve	 these	 challenges	
–  Handle	 heterogeneity	 (reacUve	 load	 balancing)	
–  Handle	 fault	 tolerance	
–  Improve	 power	 efficiency	 at	 the	 algorithmic	 level	

(extreme	 data	 locality)	

•  Hard	 to	 model	 accurately	 with	 analyUcal	 models	

8	

FAST	 AND	 ACCURATE	 SIMULATION	 IS	 NEEDED	

•  EvaluaUng	 current	 so[ware	 on	 current	 hardware	 is	
difficult	
–  Performance	 counters	 do	 not	 provide	 enough	 insight	

•  SimulaUon	 use	 cases	
–  Pre-‐silicon	 so[ware	 opUmizaUon	
– Architecture	 exploraUon	

•  Cycle-‐accurate	 simulaUon	 is	 too	 slow	 for	 exploring	
mulU/many-‐core	 design	 space	 and	 so[ware	

•  Key	 quesUons	
–  Can	 we	 raise	 the	 level	 of	 abstracUon?	
– What	 is	 the	 right	 level	 of	 abstracUon?	
– When	 to	 use	 these	 abstracUon	 models?	

9	

SNIPER:	 A	 FAST	 AND	 ACCURATE	 SIMULATOR	

•  Hybrid	 simulaUon	 approach	
– AnalyUcal	 interval	 core	 model	
– Micro-‐architecture	 structure	 simulaUon	

•  branch	 predictors,	 caches	 (incl.	 coherency),	 NoC,	 etc.	
•  Hardware-‐validated,	 Pin-‐based	
•  Models	 mulU/many-‐cores	 running	 mulU-‐
threaded	 and	 mulU-‐program	 workloads	

•  Parallel	 simulator	 scales	 with	 the	 number	 of	
simulated	 cores	

•  Available	 at	 http://snipersim.org	
10	

TOP	 SNIPER	 FEATURES	
•  Interval	 Model	
•  MulU-‐threaded	 ApplicaUon	 Sampling	
•  CPI	 Stacks	 and	 InteracUve	 VisualizaUon	
•  Parallel	 MulUthreaded	 Simulator	
•  x86-‐64	 and	 SSE2	 support	
•  Validated	 against	 Core2,	 Nehalem	
•  Thread	 scheduling	 and	 migraUon	
•  Full	 DVFS	 support	
•  Shared	 and	 private	 caches	
•  Modern	 branch	 predictor	
•  Supports	 pthreads	 and	 OpenMP,	 TBB,	 OpenCL,	 MPI,	 …	
•  SimAPI	 and	 Python	 interfaces	 to	 the	 simulator	
•  Many	 flavors	 of	 Linux	 supported	 (Redhat,	 Ubuntu,	 etc.)	

11	

SNIPER	 LIMITATIONS	

•  User-‐level	
– Not	 the	 best	 match	 for	 workloads	 with	 significant	 OS	
involvement	

•  FuncUonal-‐directed	
– No	 simulaUon	 /	 cache	 accesses	 along	 false	 paths	

•  High-‐abstracUon	 core	 model	
– Not	 suited	 to	 model	 all	 effects	 of	 core-‐level	 changes	
–  Perfect	 for	 memory	 subsystem	 or	 NoC	 work	

•  x86	 only	
•  But	 …	 is	 a	 perfect	 match	 for	 HPC	 evaluaUon	

12	

SNIPER	 HISTORY	
•  November,	 2011:	 SC’11	 paper,	 first	 public	 release	
•  March	 2012,	 version	 2.0:	 MulU-‐program	 workloads	
•  May	 2012,	 version	 3.0:	 Heterogeneous	 architectures	
•  November	 2012,	 version	 4.0:	 Thread	 scheduling	 and	 migraUon	
•  April	 2013,	 version	 5.0:	 MulU-‐threaded	 applicaUon	 sampling	
•  June	 2013,	 version	 5.1:	 SuggesUons	 for	 opUmizaUon	 visualizaUon	

13	

•  September	 2013,	
version	 5.2:	
	 MESI/F,	 2-‐level	 TLBs,	
	 Python	 scheduling	

•  Today:	 700+	 downloads	
from	 60	 countries	

HTTP://WWW.SNIPERSIM.ORG	
SATURDAY,	 FEBRUARY	 1ST,	 2013	

FOSDEM	 2014	 –	 HPC	 DEVROOM	 –	 BRUSSELS,	 BRLGIUM	

THE	 SNIPER	 MULTI-‐CORE	 SIMULATOR	
VISUALIZATION	

Sniper	 generates	 quite	 a	 few	 staUsUcs,	
but	 only	 with	 text	 is	 it	 difficult	 to	 understand	
performance	 details	

Text	 output	 from	 Sniper	 (sim.stats)	

15	

VISUALIZATION	

CYCLE	 STACKS	

•  Where	 did	 my	 cycles	 go?	
•  CPI	 stack	
– Cycles	 per	 instrucUon	
– Broken	 up	 in	 components	

•  Normalize	 by	 either	
– Number	 of	 instrucUons	 (CPI	 stack)	
– ExecuUon	 Ume	 (Ume	 stack)	

•  Different	 from	 miss	 rates:	 	
cycle	 stacks	 directly	 quanUfy	 	
the	 effect	 on	 performance	

16	

CPI	

L2	 cache	
I-‐cache	
Branch	
Base	

CYCLE	 STACKS	 FOR	 PARALLEL	 APPLICATIONS	

By	 thread:	 heterogeneous	 behavior	 	
in	 a	 homogeneous	 applicaUon?	

17	
DRAM	

L2	

L1	 L1	 L1	 L1	

L2	 L2	 L2	

L3	

L2	

L1	 L1	 L1	 L1	

L2	 L2	 L2	

L3	 data	

USING	 CYCLE	 STACKS	 TO	 EXPLAIN	 SCALING	
BEHAVIOR	

18	

USING	 CYCLE	 STACKS	 TO	 EXPLAIN	 SCALING	
BEHAVIOR	
•  Scale	 input:	 applicaUon	 becomes	 DRAM	 bound	

19	

USING	 CYCLE	 STACKS	 TO	 EXPLAIN	 SCALING	
BEHAVIOR	
•  Scale	 input:	 applicaUon	 becomes	 DRAM	 bound	
•  Scale	 core	 count:	 sync	 losses	 increase	 to	 20%	

20	

21	

VIZ:	 CYCLES	 STACKS	 IN	 TIME	

22	

VIZ:	 ENERGY	 OUTPUT	 OVER	 TIME	

23	

3D	 VISUALIZATION:	 IPC	 VS.	 TIME	 VS.	 CORE	

ARCHITECTURE	 TOPOLOGY	 VISUALIZATION	

•  System	 topology	 informaUon	
– With	 IPC/MPKI/APKI	 stats	 for	 each	 component	

24	

SUGGESTIONS	 FOR	 OPTIMIZATION:	
	 INSTRUCTIONS	 VS.	 TIME	 PLOT	

25	

Expected	
trends	

Outlying	 funcUons	
(more	 Ume	 per	 insn)	

SUGGESTIONS	 FOR	 OPTIMIZATION:	
	 ROOFLINE	 MODEL	

26	

Peak	 memory	
bandwidth	

Peak	 FP	
performance	

S.	 Williams,	 A.	 Waterman,	 and	 D.	 A.	 Pacerson,	 “Roofline:	 An	 insightul	 visual	 performance	 model	
for	 mulUcore	 architectures,”	 CommunicaUons	 of	 the	 ACM,	 vol.	 52,	 no.	 4,	 pp.	 65–76,	 Apr.	 2009.	

HTTP://WWW.SNIPERSIM.ORG	
SATURDAY,	 FEBRUARY	 1ST,	 2013	

FOSDEM	 2014	 –	 HPC	 DEVROOM	 –	 BRUSSELS,	 BRLGIUM	

THE	 SNIPER	 MULTI-‐CORE	 SIMULATOR	
POWER-‐AWARE	 HW/SW	 OPTIMIZATION	

H/W	 UNDER/OVERSUBSCRIPTION	
•  Main	 idea:	

–  For	 Xeon-‐Phi-‐style	 cores,	 cache	 performance	 is	 the	 biggest	
indicator	 of	 performance	

•  Each	 core	 has	 a	 private	 cache	 hierarchy	
–  Private	 L1	 +	 Private	 L2	

•  Can	 access	 other	 L2s	 via	 coherency	
•  Each	 applicaUon	 has	 its	 own	 cache	 scaling	 characterisUcs	

–  We	 see	 cache	 requirements	 both	 increasing,	 and	 decreasing	 per	
core	
•  Increasing:	 globally	 shared	 working	 set	
•  Decreasing:	 data	 is	 parUUoned	 per	 core	

•  By	 controlling	 the	 core/thread	 count	 we	 can	 opUmize	
placement	

28	

POWER-‐AWARE	 HW/SW	 CO-‐OPTIMIZATION	

29	

•  Hooked	 up	 McPAT	 (MulU-‐Core	 Power,	 Area,	 Timing	 framework)	 to	
Sniper’s	 output	 staUsUcs	

•  Evaluate	 different	 architecture	 direcUons	 (45nm	 to	 22nm)	 with	
near-‐constant	 area	

•  Compare	 performance,	 energy	 efficiency	

baseline:	 2x	 quad-‐core	

8	 cores	
16	 cores,	 no	 L3,	 stacked	 DRAM	

16	 slow	 cores	 16	 thin	 cores	

core	
cache	

[Heirman	 et	 al.,	 PACT	 2012]	

POWER-‐AWARE	 HW/SW	 CO-‐OPTIMIZATION	

•  Heat	 transfer:	 stencil	 on	 regular	 grid	
–  Used	 in	 the	 ExaScience	 Lab	 as	 component	 of	 Space	 Weather	 modeling	
–  Important	 kernel,	 part	 of	 Berkeley	 Dwarfs	 (structured	 grid)	

•  Improve	 memory	 locality:	 Uling	 over	 mulUple	 Ume	 steps	
–  Trade	 off	 locality	 with	 redundant	 computaUon	
–  OpUmum	 depends	 on	 relaUve	 cost	 (performance	 &	 energy)	

of	 computaUon,	 data	 transfer	 à	 requires	 integrated	 simulator	

30	

compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-e⌅cient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of

0
B

0

B 0

 1

 2

 3

s

Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].

 4

 8

 16

 32

1/2 1 2 4 8 16

P
e

rf
o

rm
a

n
ce

 (
G

F
L

O
P

/s
)

Arithmetic intensity (FLOP/byte)

peak m
emory bandwidth

peak floating-point performance

redundant computation

Total performance

Useful performance (2562 tiles)
Useful performance (1282 tiles)

Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology

compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-e⌅cient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of

0
B

0

B 0

 1

 2

 3

s

Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].

 4

 8

 16

 32

1/2 1 2 4 8 16

P
e
rf

o
rm

a
n
ce

 (
G

F
L
O

P
/s

)

Arithmetic intensity (FLOP/byte)

peak m
emory bandwidth

peak floating-point performance

redundant computation

Total performance

Useful performance (2562 tiles)
Useful performance (1282 tiles)

Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology

31	

POWER-‐AWARE	 HW/SW	 CO-‐OPTIMIZATION	

(a) Performance (simulated time steps per second)

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

8-core

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

3D

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

low-frequency

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

dual-issue

32 64 128 256 512

(b) Energy e⌅ciency (simulated time steps per Joule)

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

8-core

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

3D

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

low-frequency

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

dual-issue

32 64 128 256 512

Figure 9: Hardware/software co-design for the heat benchmark when optimizing for performance and energy
e�ciency: four architecture design points are considered while varying software parameters such as tile size
(see legend) and arithmetic intensity (horizontal axes).

for performance and power to explore these trade-o�s and
hardware/software interactions.

7.3 Co-design analysis
Figure 9 plots the simulation results for hard-

ware/software co-design for the heat benchmark application.
The grid domain is 4096�4096 elements. This domain is
split up into square tiles measuring between 32 and 512 data
points on each side. The complete domain is 128 MB in total
and does not fit in the last-level cache for any of the archi-
tectures considered, so tiles always have to be loaded from
main memory. The number of time steps performed on each
tile before moving on to the next one varies between 1 and
65 steps. The graphs plot the achieved number of time steps
per second, or per Joule of consumed energy, as a function of
arithmetic intensity. The performance graphs in Figure 9(a)
follow the basic roofline model from Figure 8: initially, in-
creasing the number of time steps improves performance,
which later falls back once the amount of redundant com-
putation becomes too high. Additionally, each architecture
has an optimal tile size which maximizes data reuse while
still fitting in the cache. For example, the 8-core design point
reach a performance level of around 150 simulated time steps
per second, using a tile size of 128�128. The working set of
this application is two tiles worth of data, corresponding to
the previous and current time steps. At one double-precision
floating-point number or 8 bytes per element, the working
set of 256 KB for the 1282-sized tile fits in a core’s private
512 KB L2 cache, whereas for the larger 2562 tiles it does
not — which makes performance significantly lower than
that predicted by the roofline model. The three other ar-
chitectures, which have an L2 cache of only 256 KB, reach
their optimal performance using the smaller 642 tiles.

If we consider the e�ect of arithmetic intensity on energy
rather than performance, we see that generally the optimum
has shifted towards the left, meaning that less redundant
work — and a slightly increased access rate to main mem-

ory — is preferred. This is because the ratio between access
times of caches and DRAM is very high, making the perfor-
mance aspect of more redundant work cheap when compared
to extra DRAM accesses. On the other hand, when compar-
ing the energy cost of DRAM accesses versus that of extra
computation, the ratio is lower which makes the relative cost
of the redundant work higher. Note that this extra cost con-
sists of not just extra floating-point operations, which are in
themselves very cheap (in the order of 0.5 nJ per double-
precision operation, vs. 100 nJ per DRAM access1) but
also the cost of extra instructions flowing through all stages
of the out-of-order pipeline, extra cache accesses, etc. (In
Figure 5, floating-point ALU energy represents only a small
fraction of total core energy.)

When considering performance alone, the 3D architecture
clearly wins for this benchmark. The additional bandwidth
of the 3D stacked memory allows for a steeper performance
slope in the leftmost part of the performance graph, while
the availability of 16 full-sized cores results in the highest
peak performance across all architecture design points con-
sidered. Yet, tiles have to be kept small enough such that
they fit in L2 cache; this architecture does not have an L3
cache so the cost of L2 misses, which become significant
with tile sizes larger than 642, is much higher here than in
the other architectures.

On the other hand, the low-frequency architecture, while
being less high-performance than both the 8-core and 3D
design points, reaches the highest energy e⌅ciency. Because
this application scales fairly good with core count, and the
power envelope of the low-frequency chip is still modest, one
could even consider another doubling of the number of cores
which should almost double performance at very little addi-
tional cost in energy.

1According to the relevant component in the dynamic en-
ergy stacks computed by Sniper/McPAT, scaled by the num-
ber of FP operations or DRAM accesses throughout the
benchmark, respectively.

•  Match	 Ule	 size	 to	 L2	 size,	 find	 opUmum	 between	 locality	
and	 redundant	 work	 –	 depending	 on	 their	 (performance/
energy)	 cost	

•  Isolated	 opUmizaUon:	
–  Fix	 HW	 architecture,	 explore	 SW	 parameters	
–  Fix	 SW	 parameters,	 explore	 HW	 architecture	

•  Co-‐opUmizaUon	 yields	 1.66x	 more	 performance,	 or	 1.25x	
more	 energy	 efficiency,	 than	 isolated	 opUmizaUon	

REFERENCES	

•  Sniper	 website	
–  hcp://snipersim.org/	

•  Download	
–  hcp://snipersim.org/w/Download	
–  hcp://snipersim.org/w/Download_Benchmarks	

•  Gewng	 started	
–  hcp://snipersim.org/w/Gewng_Started	

•  QuesUons?	
–  hcp://groups.google.com/group/snipersim	
–  hcp://snipersim.org/w/Frequently_Asked_QuesUons	

32	

HTTP://WWW.SNIPERSIM.ORG	
SATURDAY,	 FEBRUARY	 1ST,	 2014	

FOSDEM	 2014	 –	 HPC	 DEVROOM	 –	 BRUSSELS,	 BELGIUM	

HPC	 NODE	 PERFORMANCE	 AND	 POWER	
SIMULATION	 WITH	 THE	 SNIPER	 MULTI-‐CORE	

SIMULATOR	

TREVOR	 E.	 CARLSON,	
WIM	 HEIRMAN,	 LIEVEN	 EECKHOUT	

