
HTTP://WWW.SNIPERSIM.ORG	

SATURDAY,	
 FEBRUARY	
 1ST,	
 2014	

FOSDEM	
 2014	
 –	
 HPC	
 DEVROOM	
 –	
 BRUSSELS,	
 BELGIUM	

HPC	
 NODE	
 PERFORMANCE	
 AND	
 POWER	

SIMULATION	
 WITH	
 THE	
 SNIPER	
 MULTI-­‐CORE	

SIMULATOR	

TREVOR	
 E.	
 CARLSON,	

WIM	
 HEIRMAN,	
 LIEVEN	
 EECKHOUT	

MAJOR	
 GOALS	
 OF	
 SNIPER	

•  What	
 will	
 node	
 performance	
 look	
 like	
 for	

next-­‐generaUon	
 systems?	

–  Intel	
 Xeon,	
 Xeon	
 Phi,	
 etc.	

•  What	
 opUmizaUons	
 can	
 we	
 make	
 for	
 these	

systems?	

– So[ware	
 OpUmizaUons	

– Hardware	
 /	
 So[ware	
 co-­‐design	

•  How	
 is	
 my	
 applicaUon	
 performing?	

– Detailed	
 insight	
 into	
 applicaUon	
 performance	

on	
 today’s	
 systems	

2	

OPTIMIZING	
 TOMORROW’S	
 SOFTWARE	

•  Design	
 tomorrow’s	
 processor	
 	

using	
 today’s	
 hardware	

•  OpUmize	
 tomorrow’s	
 so[ware	
 for	
 tomorrow’s	

processors	

•  SimulaUon	
 is	
 one	
 promising	
 soluUon	

– Obtain	
 performance	
 characterisUcs	
 	

for	
 new	
 architectures	

– Architectural	
 exploraUon	

– Early	
 so[ware	
 opUmizaUon	

3	

WHY	
 CAN’T	
 I	
 JUST	
 …	
 	

use	
 performance	
 counters?	

– perf	
 stat,	
 perf	
 record	

	

	

It	
 can	
 be	
 difficult	
 to	
 see	
 exactly	
 where	
 the	
 problems	
 are	

–  Not	
 all	
 cache	
 misses	
 are	
 alike	
 –	
 latency	
 macers	

– Modern	
 out-­‐of-­‐order	
 processors	
 can	
 overlap	
 misses	

–  Both	
 core	
 and	
 cache	
 performance	
 macers	

4	

use	
 Cachegrind?	

NODE-­‐COMPLEXITY	
 IS	
 INCREASING	

	

•  Significant	
 HPC	
 node	
 architecture	
 changes	

–  Increases	
 in	
 core	
 counts	

•  More,	
 lower-­‐power	
 cores	
 (for	
 energy	
 efficiency)	

–  Increases	
 in	
 thread	
 (SMT)	
 counts	

–  Cache-­‐coherent	
 NUMA	

•  OpUmizing	
 for	
 efficiency	

– How	
 do	
 we	
 analyze	
 our	
 current	
 so[ware?	

– How	
 do	
 we	
 design	
 our	
 next-­‐generaUon	
 so[ware?	

5	

Source:	
 Wikimedia	
 Commons	

TRENDS	
 IN	
 PROCESSOR	
 DESIGN:	
 CORES	

Number	
 of	
 cores	
 per	
 node	
 is	
 increasing	

– 2001:	
 Dual-­‐core	
 POWER4	

– 2005:	
 Dual-­‐core	
 AMD	
 Opteron	

– 2011:	
 10-­‐core	
 Intel	
 Xeon	
 Westmere-­‐EX	

– 2012:	
 Intel	
 MIC	
 Knights	
 Corner	
 (60+	
 cores)	

– 2013:	
 Intel	
 MIC	
 Knights	
 Landing	
 announced1	

6	

Westmere-­‐EX,	
 Source:	
 Intel	
 Xeon	
 Phi,	
 Source:	
 Intel	

1hcp://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17/	

	
 	
 intel-­‐powers-­‐the-­‐worlds-­‐fastest-­‐supercomputer-­‐reveals-­‐new-­‐and-­‐future-­‐high-­‐performance-­‐compuUng-­‐technologies	

MANY	
 ARCHITECTURE	
 OPTIONS	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L3	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L3	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L3	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L2	

L1I	
 L1
D	
 L1I	
 L1

D	

L3	

DRAM	

7	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

L1I	
 L1
D	

L2	

NoC	

L1I	
 L1
D	

L2	

UPCOMING	
 CHALLENGES	

•  Future	
 systems	
 will	
 be	
 diverse	

–  Varying	
 processor	
 speeds	

–  Varying	
 failure	
 rates	
 for	
 different	
 components	

–  Homogeneous	
 applicaUons	
 show	
 heterogeneous	
 performance	

•  So[ware	
 and	
 hardware	
 soluUons	
 are	
 needed	
 to	

solve	
 these	
 challenges	

–  Handle	
 heterogeneity	
 (reacUve	
 load	
 balancing)	

–  Handle	
 fault	
 tolerance	

–  Improve	
 power	
 efficiency	
 at	
 the	
 algorithmic	
 level	

(extreme	
 data	
 locality)	

•  Hard	
 to	
 model	
 accurately	
 with	
 analyUcal	
 models	

8	

FAST	
 AND	
 ACCURATE	
 SIMULATION	
 IS	
 NEEDED	

•  EvaluaUng	
 current	
 so[ware	
 on	
 current	
 hardware	
 is	

difficult	

–  Performance	
 counters	
 do	
 not	
 provide	
 enough	
 insight	

•  SimulaUon	
 use	
 cases	

–  Pre-­‐silicon	
 so[ware	
 opUmizaUon	

– Architecture	
 exploraUon	

•  Cycle-­‐accurate	
 simulaUon	
 is	
 too	
 slow	
 for	
 exploring	

mulU/many-­‐core	
 design	
 space	
 and	
 so[ware	

•  Key	
 quesUons	

–  Can	
 we	
 raise	
 the	
 level	
 of	
 abstracUon?	

– What	
 is	
 the	
 right	
 level	
 of	
 abstracUon?	

– When	
 to	
 use	
 these	
 abstracUon	
 models?	

9	

SNIPER:	
 A	
 FAST	
 AND	
 ACCURATE	
 SIMULATOR	

•  Hybrid	
 simulaUon	
 approach	

– AnalyUcal	
 interval	
 core	
 model	

– Micro-­‐architecture	
 structure	
 simulaUon	

•  branch	
 predictors,	
 caches	
 (incl.	
 coherency),	
 NoC,	
 etc.	

•  Hardware-­‐validated,	
 Pin-­‐based	

•  Models	
 mulU/many-­‐cores	
 running	
 mulU-­‐
threaded	
 and	
 mulU-­‐program	
 workloads	

•  Parallel	
 simulator	
 scales	
 with	
 the	
 number	
 of	

simulated	
 cores	

•  Available	
 at	
 http://snipersim.org	

10	

TOP	
 SNIPER	
 FEATURES	

•  Interval	
 Model	

•  MulU-­‐threaded	
 ApplicaUon	
 Sampling	

•  CPI	
 Stacks	
 and	
 InteracUve	
 VisualizaUon	

•  Parallel	
 MulUthreaded	
 Simulator	

•  x86-­‐64	
 and	
 SSE2	
 support	

•  Validated	
 against	
 Core2,	
 Nehalem	

•  Thread	
 scheduling	
 and	
 migraUon	

•  Full	
 DVFS	
 support	

•  Shared	
 and	
 private	
 caches	

•  Modern	
 branch	
 predictor	

•  Supports	
 pthreads	
 and	
 OpenMP,	
 TBB,	
 OpenCL,	
 MPI,	
 …	

•  SimAPI	
 and	
 Python	
 interfaces	
 to	
 the	
 simulator	

•  Many	
 flavors	
 of	
 Linux	
 supported	
 (Redhat,	
 Ubuntu,	
 etc.)	

11	

SNIPER	
 LIMITATIONS	

•  User-­‐level	

– Not	
 the	
 best	
 match	
 for	
 workloads	
 with	
 significant	
 OS	

involvement	

•  FuncUonal-­‐directed	

– No	
 simulaUon	
 /	
 cache	
 accesses	
 along	
 false	
 paths	

•  High-­‐abstracUon	
 core	
 model	

– Not	
 suited	
 to	
 model	
 all	
 effects	
 of	
 core-­‐level	
 changes	

–  Perfect	
 for	
 memory	
 subsystem	
 or	
 NoC	
 work	

•  x86	
 only	

•  But	
 …	
 is	
 a	
 perfect	
 match	
 for	
 HPC	
 evaluaUon	

12	

SNIPER	
 HISTORY	

•  November,	
 2011:	
 SC’11	
 paper,	
 first	
 public	
 release	

•  March	
 2012,	
 version	
 2.0:	
 MulU-­‐program	
 workloads	

•  May	
 2012,	
 version	
 3.0:	
 Heterogeneous	
 architectures	

•  November	
 2012,	
 version	
 4.0:	
 Thread	
 scheduling	
 and	
 migraUon	

•  April	
 2013,	
 version	
 5.0:	
 MulU-­‐threaded	
 applicaUon	
 sampling	

•  June	
 2013,	
 version	
 5.1:	
 SuggesUons	
 for	
 opUmizaUon	
 visualizaUon	

13	

•  September	
 2013,	

version	
 5.2:	

	
 MESI/F,	
 2-­‐level	
 TLBs,	

	
 Python	
 scheduling	

•  Today:	
 700+	
 downloads	

from	
 60	
 countries	

HTTP://WWW.SNIPERSIM.ORG	

SATURDAY,	
 FEBRUARY	
 1ST,	
 2013	

FOSDEM	
 2014	
 –	
 HPC	
 DEVROOM	
 –	
 BRUSSELS,	
 BRLGIUM	

THE	
 SNIPER	
 MULTI-­‐CORE	
 SIMULATOR	

VISUALIZATION	

Sniper	
 generates	
 quite	
 a	
 few	
 staUsUcs,	

but	
 only	
 with	
 text	
 is	
 it	
 difficult	
 to	
 understand	

performance	
 details	

Text	
 output	
 from	
 Sniper	
 (sim.stats)	

15	

VISUALIZATION	

CYCLE	
 STACKS	

•  Where	
 did	
 my	
 cycles	
 go?	

•  CPI	
 stack	

– Cycles	
 per	
 instrucUon	

– Broken	
 up	
 in	
 components	

•  Normalize	
 by	
 either	

– Number	
 of	
 instrucUons	
 (CPI	
 stack)	

– ExecuUon	
 Ume	
 (Ume	
 stack)	

•  Different	
 from	
 miss	
 rates:	
 	

cycle	
 stacks	
 directly	
 quanUfy	
 	

the	
 effect	
 on	
 performance	

16	

CPI	

L2	
 cache	

I-­‐cache	

Branch	

Base	

CYCLE	
 STACKS	
 FOR	
 PARALLEL	
 APPLICATIONS	

By	
 thread:	
 heterogeneous	
 behavior	
 	

in	
 a	
 homogeneous	
 applicaUon?	

17	

DRAM	

L2	

L1	
 L1	
 L1	
 L1	

L2	
 L2	
 L2	

L3	

L2	

L1	
 L1	
 L1	
 L1	

L2	
 L2	
 L2	

L3	
 data	

USING	
 CYCLE	
 STACKS	
 TO	
 EXPLAIN	
 SCALING	

BEHAVIOR	

18	

USING	
 CYCLE	
 STACKS	
 TO	
 EXPLAIN	
 SCALING	

BEHAVIOR	

•  Scale	
 input:	
 applicaUon	
 becomes	
 DRAM	
 bound	

19	

USING	
 CYCLE	
 STACKS	
 TO	
 EXPLAIN	
 SCALING	

BEHAVIOR	

•  Scale	
 input:	
 applicaUon	
 becomes	
 DRAM	
 bound	

•  Scale	
 core	
 count:	
 sync	
 losses	
 increase	
 to	
 20%	

20	

21	

VIZ:	
 CYCLES	
 STACKS	
 IN	
 TIME	

22	

VIZ:	
 ENERGY	
 OUTPUT	
 OVER	
 TIME	

23	

3D	
 VISUALIZATION:	
 IPC	
 VS.	
 TIME	
 VS.	
 CORE	

ARCHITECTURE	
 TOPOLOGY	
 VISUALIZATION	

•  System	
 topology	
 informaUon	

– With	
 IPC/MPKI/APKI	
 stats	
 for	
 each	
 component	

24	

SUGGESTIONS	
 FOR	
 OPTIMIZATION:	

	
 INSTRUCTIONS	
 VS.	
 TIME	
 PLOT	

25	

Expected	

trends	

Outlying	
 funcUons	

(more	
 Ume	
 per	
 insn)	

SUGGESTIONS	
 FOR	
 OPTIMIZATION:	

	
 ROOFLINE	
 MODEL	

26	

Peak	
 memory	

bandwidth	

Peak	
 FP	

performance	

S.	
 Williams,	
 A.	
 Waterman,	
 and	
 D.	
 A.	
 Pacerson,	
 “Roofline:	
 An	
 insightul	
 visual	
 performance	
 model	

for	
 mulUcore	
 architectures,”	
 CommunicaUons	
 of	
 the	
 ACM,	
 vol.	
 52,	
 no.	
 4,	
 pp.	
 65–76,	
 Apr.	
 2009.	

HTTP://WWW.SNIPERSIM.ORG	

SATURDAY,	
 FEBRUARY	
 1ST,	
 2013	

FOSDEM	
 2014	
 –	
 HPC	
 DEVROOM	
 –	
 BRUSSELS,	
 BRLGIUM	

THE	
 SNIPER	
 MULTI-­‐CORE	
 SIMULATOR	

POWER-­‐AWARE	
 HW/SW	
 OPTIMIZATION	

H/W	
 UNDER/OVERSUBSCRIPTION	

•  Main	
 idea:	

–  For	
 Xeon-­‐Phi-­‐style	
 cores,	
 cache	
 performance	
 is	
 the	
 biggest	

indicator	
 of	
 performance	

•  Each	
 core	
 has	
 a	
 private	
 cache	
 hierarchy	

–  Private	
 L1	
 +	
 Private	
 L2	

•  Can	
 access	
 other	
 L2s	
 via	
 coherency	

•  Each	
 applicaUon	
 has	
 its	
 own	
 cache	
 scaling	
 characterisUcs	

–  We	
 see	
 cache	
 requirements	
 both	
 increasing,	
 and	
 decreasing	
 per	

core	

•  Increasing:	
 globally	
 shared	
 working	
 set	

•  Decreasing:	
 data	
 is	
 parUUoned	
 per	
 core	

•  By	
 controlling	
 the	
 core/thread	
 count	
 we	
 can	
 opUmize	

placement	

28	

POWER-­‐AWARE	
 HW/SW	
 CO-­‐OPTIMIZATION	

29	

•  Hooked	
 up	
 McPAT	
 (MulU-­‐Core	
 Power,	
 Area,	
 Timing	
 framework)	
 to	

Sniper’s	
 output	
 staUsUcs	

•  Evaluate	
 different	
 architecture	
 direcUons	
 (45nm	
 to	
 22nm)	
 with	

near-­‐constant	
 area	

•  Compare	
 performance,	
 energy	
 efficiency	

baseline:	
 2x	
 quad-­‐core	

8	
 cores	

16	
 cores,	
 no	
 L3,	
 stacked	
 DRAM	

16	
 slow	
 cores	
 16	
 thin	
 cores	

core	

cache	

[Heirman	
 et	
 al.,	
 PACT	
 2012]	

POWER-­‐AWARE	
 HW/SW	
 CO-­‐OPTIMIZATION	

•  Heat	
 transfer:	
 stencil	
 on	
 regular	
 grid	

–  Used	
 in	
 the	
 ExaScience	
 Lab	
 as	
 component	
 of	
 Space	
 Weather	
 modeling	

–  Important	
 kernel,	
 part	
 of	
 Berkeley	
 Dwarfs	
 (structured	
 grid)	

•  Improve	
 memory	
 locality:	
 Uling	
 over	
 mulUple	
 Ume	
 steps	

–  Trade	
 off	
 locality	
 with	
 redundant	
 computaUon	

–  OpUmum	
 depends	
 on	
 relaUve	
 cost	
 (performance	
 &	
 energy)	

of	
 computaUon,	
 data	
 transfer	
 à	
 requires	
 integrated	
 simulator	

30	

compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-e⌅cient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of

0
B

0

B 0

 1

 2

 3

s

Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].

 4

 8

 16

 32

1/2 1 2 4 8 16

P
e

rf
o

rm
a

n
ce

 (
G

F
L

O
P

/s
)

Arithmetic intensity (FLOP/byte)

peak m
emory bandwidth

peak floating-point performance

redundant computation

Total performance

Useful performance (2562 tiles)
Useful performance (1282 tiles)

Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology

compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-e⌅cient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of

0
B

0

B 0

 1

 2

 3

s

Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].

 4

 8

 16

 32

1/2 1 2 4 8 16

P
e
rf

o
rm

a
n
ce

 (
G

F
L
O

P
/s

)

Arithmetic intensity (FLOP/byte)

peak m
emory bandwidth

peak floating-point performance

redundant computation

Total performance

Useful performance (2562 tiles)
Useful performance (1282 tiles)

Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology

31	

POWER-­‐AWARE	
 HW/SW	
 CO-­‐OPTIMIZATION	

(a) Performance (simulated time steps per second)

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

8-core

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

3D

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

low-frequency

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s/

tim
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

dual-issue

32 64 128 256 512

(b) Energy e⌅ciency (simulated time steps per Joule)

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

8-core

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

3D

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

low-frequency

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s/

E
n

e
rg

y
(1

/J
)

Arithmetic intensity (FLOP/byte)

dual-issue

32 64 128 256 512

Figure 9: Hardware/software co-design for the heat benchmark when optimizing for performance and energy
e�ciency: four architecture design points are considered while varying software parameters such as tile size
(see legend) and arithmetic intensity (horizontal axes).

for performance and power to explore these trade-o�s and
hardware/software interactions.

7.3 Co-design analysis
Figure 9 plots the simulation results for hard-

ware/software co-design for the heat benchmark application.
The grid domain is 4096�4096 elements. This domain is
split up into square tiles measuring between 32 and 512 data
points on each side. The complete domain is 128 MB in total
and does not fit in the last-level cache for any of the archi-
tectures considered, so tiles always have to be loaded from
main memory. The number of time steps performed on each
tile before moving on to the next one varies between 1 and
65 steps. The graphs plot the achieved number of time steps
per second, or per Joule of consumed energy, as a function of
arithmetic intensity. The performance graphs in Figure 9(a)
follow the basic roofline model from Figure 8: initially, in-
creasing the number of time steps improves performance,
which later falls back once the amount of redundant com-
putation becomes too high. Additionally, each architecture
has an optimal tile size which maximizes data reuse while
still fitting in the cache. For example, the 8-core design point
reach a performance level of around 150 simulated time steps
per second, using a tile size of 128�128. The working set of
this application is two tiles worth of data, corresponding to
the previous and current time steps. At one double-precision
floating-point number or 8 bytes per element, the working
set of 256 KB for the 1282-sized tile fits in a core’s private
512 KB L2 cache, whereas for the larger 2562 tiles it does
not — which makes performance significantly lower than
that predicted by the roofline model. The three other ar-
chitectures, which have an L2 cache of only 256 KB, reach
their optimal performance using the smaller 642 tiles.

If we consider the e�ect of arithmetic intensity on energy
rather than performance, we see that generally the optimum
has shifted towards the left, meaning that less redundant
work — and a slightly increased access rate to main mem-

ory — is preferred. This is because the ratio between access
times of caches and DRAM is very high, making the perfor-
mance aspect of more redundant work cheap when compared
to extra DRAM accesses. On the other hand, when compar-
ing the energy cost of DRAM accesses versus that of extra
computation, the ratio is lower which makes the relative cost
of the redundant work higher. Note that this extra cost con-
sists of not just extra floating-point operations, which are in
themselves very cheap (in the order of 0.5 nJ per double-
precision operation, vs. 100 nJ per DRAM access1) but
also the cost of extra instructions flowing through all stages
of the out-of-order pipeline, extra cache accesses, etc. (In
Figure 5, floating-point ALU energy represents only a small
fraction of total core energy.)

When considering performance alone, the 3D architecture
clearly wins for this benchmark. The additional bandwidth
of the 3D stacked memory allows for a steeper performance
slope in the leftmost part of the performance graph, while
the availability of 16 full-sized cores results in the highest
peak performance across all architecture design points con-
sidered. Yet, tiles have to be kept small enough such that
they fit in L2 cache; this architecture does not have an L3
cache so the cost of L2 misses, which become significant
with tile sizes larger than 642, is much higher here than in
the other architectures.

On the other hand, the low-frequency architecture, while
being less high-performance than both the 8-core and 3D
design points, reaches the highest energy e⌅ciency. Because
this application scales fairly good with core count, and the
power envelope of the low-frequency chip is still modest, one
could even consider another doubling of the number of cores
which should almost double performance at very little addi-
tional cost in energy.

1According to the relevant component in the dynamic en-
ergy stacks computed by Sniper/McPAT, scaled by the num-
ber of FP operations or DRAM accesses throughout the
benchmark, respectively.

•  Match	
 Ule	
 size	
 to	
 L2	
 size,	
 find	
 opUmum	
 between	
 locality	

and	
 redundant	
 work	
 –	
 depending	
 on	
 their	
 (performance/
energy)	
 cost	

•  Isolated	
 opUmizaUon:	

–  Fix	
 HW	
 architecture,	
 explore	
 SW	
 parameters	

–  Fix	
 SW	
 parameters,	
 explore	
 HW	
 architecture	

•  Co-­‐opUmizaUon	
 yields	
 1.66x	
 more	
 performance,	
 or	
 1.25x	

more	
 energy	
 efficiency,	
 than	
 isolated	
 opUmizaUon	

REFERENCES	

•  Sniper	
 website	

–  hcp://snipersim.org/	

•  Download	

–  hcp://snipersim.org/w/Download	

–  hcp://snipersim.org/w/Download_Benchmarks	

•  Gewng	
 started	

–  hcp://snipersim.org/w/Gewng_Started	

•  QuesUons?	

–  hcp://groups.google.com/group/snipersim	

–  hcp://snipersim.org/w/Frequently_Asked_QuesUons	

32	

HTTP://WWW.SNIPERSIM.ORG	

SATURDAY,	
 FEBRUARY	
 1ST,	
 2014	

FOSDEM	
 2014	
 –	
 HPC	
 DEVROOM	
 –	
 BRUSSELS,	
 BELGIUM	

HPC	
 NODE	
 PERFORMANCE	
 AND	
 POWER	

SIMULATION	
 WITH	
 THE	
 SNIPER	
 MULTI-­‐CORE	

SIMULATOR	

TREVOR	
 E.	
 CARLSON,	

WIM	
 HEIRMAN,	
 LIEVEN	
 EECKHOUT	

