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MAJOR	
  GOALS	
  OF	
  SNIPER	
  

•  What	
  will	
  node	
  performance	
  look	
  like	
  for	
  
next-­‐generaUon	
  systems?	
  
–  Intel	
  Xeon,	
  Xeon	
  Phi,	
  etc.	
  

•  What	
  opUmizaUons	
  can	
  we	
  make	
  for	
  these	
  
systems?	
  
– So[ware	
  OpUmizaUons	
  
– Hardware	
  /	
  So[ware	
  co-­‐design	
  

•  How	
  is	
  my	
  applicaUon	
  performing?	
  
– Detailed	
  insight	
  into	
  applicaUon	
  performance	
  
on	
  today’s	
  systems	
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OPTIMIZING	
  TOMORROW’S	
  SOFTWARE	
  

•  Design	
  tomorrow’s	
  processor	
  	
  
using	
  today’s	
  hardware	
  

•  OpUmize	
  tomorrow’s	
  so[ware	
  for	
  tomorrow’s	
  
processors	
  

•  SimulaUon	
  is	
  one	
  promising	
  soluUon	
  
– Obtain	
  performance	
  characterisUcs	
  	
  
for	
  new	
  architectures	
  

– Architectural	
  exploraUon	
  
– Early	
  so[ware	
  opUmizaUon	
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WHY	
  CAN’T	
  I	
  JUST	
  …	
  	
  

use	
  performance	
  counters?	
  
– perf	
  stat,	
  perf	
  record	
  

	
  

	
  
It	
  can	
  be	
  difficult	
  to	
  see	
  exactly	
  where	
  the	
  problems	
  are	
  
–  Not	
  all	
  cache	
  misses	
  are	
  alike	
  –	
  latency	
  macers	
  
– Modern	
  out-­‐of-­‐order	
  processors	
  can	
  overlap	
  misses	
  
–  Both	
  core	
  and	
  cache	
  performance	
  macers	
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use	
  Cachegrind?	
  



NODE-­‐COMPLEXITY	
  IS	
  INCREASING	
  

	
  
•  Significant	
  HPC	
  node	
  architecture	
  changes	
  
–  Increases	
  in	
  core	
  counts	
  

•  More,	
  lower-­‐power	
  cores	
  (for	
  energy	
  efficiency)	
  
–  Increases	
  in	
  thread	
  (SMT)	
  counts	
  
–  Cache-­‐coherent	
  NUMA	
  

•  OpUmizing	
  for	
  efficiency	
  
– How	
  do	
  we	
  analyze	
  our	
  current	
  so[ware?	
  
– How	
  do	
  we	
  design	
  our	
  next-­‐generaUon	
  so[ware?	
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TRENDS	
  IN	
  PROCESSOR	
  DESIGN:	
  CORES	
  

Number	
  of	
  cores	
  per	
  node	
  is	
  increasing	
  
– 2001:	
  Dual-­‐core	
  POWER4	
  
– 2005:	
  Dual-­‐core	
  AMD	
  Opteron	
  
– 2011:	
  10-­‐core	
  Intel	
  Xeon	
  Westmere-­‐EX	
  
– 2012:	
  Intel	
  MIC	
  Knights	
  Corner	
  (60+	
  cores)	
  
– 2013:	
  Intel	
  MIC	
  Knights	
  Landing	
  announced1	
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Westmere-­‐EX,	
  Source:	
  Intel	
   Xeon	
  Phi,	
  Source:	
  Intel	
  
1hcp://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17/	
  
	
  	
  intel-­‐powers-­‐the-­‐worlds-­‐fastest-­‐supercomputer-­‐reveals-­‐new-­‐and-­‐future-­‐high-­‐performance-­‐compuUng-­‐technologies	
  



MANY	
  ARCHITECTURE	
  OPTIONS	
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UPCOMING	
  CHALLENGES	
  

•  Future	
  systems	
  will	
  be	
  diverse	
  
–  Varying	
  processor	
  speeds	
  
–  Varying	
  failure	
  rates	
  for	
  different	
  components	
  
–  Homogeneous	
  applicaUons	
  show	
  heterogeneous	
  performance	
  

•  So[ware	
  and	
  hardware	
  soluUons	
  are	
  needed	
  to	
  
solve	
  these	
  challenges	
  
–  Handle	
  heterogeneity	
  (reacUve	
  load	
  balancing)	
  
–  Handle	
  fault	
  tolerance	
  
–  Improve	
  power	
  efficiency	
  at	
  the	
  algorithmic	
  level	
  

(extreme	
  data	
  locality)	
  

•  Hard	
  to	
  model	
  accurately	
  with	
  analyUcal	
  models	
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FAST	
  AND	
  ACCURATE	
  SIMULATION	
  IS	
  NEEDED	
  

•  EvaluaUng	
  current	
  so[ware	
  on	
  current	
  hardware	
  is	
  
difficult	
  
–  Performance	
  counters	
  do	
  not	
  provide	
  enough	
  insight	
  

•  SimulaUon	
  use	
  cases	
  
–  Pre-­‐silicon	
  so[ware	
  opUmizaUon	
  
– Architecture	
  exploraUon	
  

•  Cycle-­‐accurate	
  simulaUon	
  is	
  too	
  slow	
  for	
  exploring	
  
mulU/many-­‐core	
  design	
  space	
  and	
  so[ware	
  

•  Key	
  quesUons	
  
–  Can	
  we	
  raise	
  the	
  level	
  of	
  abstracUon?	
  
– What	
  is	
  the	
  right	
  level	
  of	
  abstracUon?	
  
– When	
  to	
  use	
  these	
  abstracUon	
  models?	
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SNIPER:	
  A	
  FAST	
  AND	
  ACCURATE	
  SIMULATOR	
  

•  Hybrid	
  simulaUon	
  approach	
  
– AnalyUcal	
  interval	
  core	
  model	
  
– Micro-­‐architecture	
  structure	
  simulaUon	
  

•  branch	
  predictors,	
  caches	
  (incl.	
  coherency),	
  NoC,	
  etc.	
  
•  Hardware-­‐validated,	
  Pin-­‐based	
  
•  Models	
  mulU/many-­‐cores	
  running	
  mulU-­‐
threaded	
  and	
  mulU-­‐program	
  workloads	
  

•  Parallel	
  simulator	
  scales	
  with	
  the	
  number	
  of	
  
simulated	
  cores	
  

•  Available	
  at	
  http://snipersim.org	
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TOP	
  SNIPER	
  FEATURES	
  
•  Interval	
  Model	
  
•  MulU-­‐threaded	
  ApplicaUon	
  Sampling	
  
•  CPI	
  Stacks	
  and	
  InteracUve	
  VisualizaUon	
  
•  Parallel	
  MulUthreaded	
  Simulator	
  
•  x86-­‐64	
  and	
  SSE2	
  support	
  
•  Validated	
  against	
  Core2,	
  Nehalem	
  
•  Thread	
  scheduling	
  and	
  migraUon	
  
•  Full	
  DVFS	
  support	
  
•  Shared	
  and	
  private	
  caches	
  
•  Modern	
  branch	
  predictor	
  
•  Supports	
  pthreads	
  and	
  OpenMP,	
  TBB,	
  OpenCL,	
  MPI,	
  …	
  
•  SimAPI	
  and	
  Python	
  interfaces	
  to	
  the	
  simulator	
  
•  Many	
  flavors	
  of	
  Linux	
  supported	
  (Redhat,	
  Ubuntu,	
  etc.)	
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SNIPER	
  LIMITATIONS	
  

•  User-­‐level	
  
– Not	
  the	
  best	
  match	
  for	
  workloads	
  with	
  significant	
  OS	
  
involvement	
  

•  FuncUonal-­‐directed	
  
– No	
  simulaUon	
  /	
  cache	
  accesses	
  along	
  false	
  paths	
  

•  High-­‐abstracUon	
  core	
  model	
  
– Not	
  suited	
  to	
  model	
  all	
  effects	
  of	
  core-­‐level	
  changes	
  
–  Perfect	
  for	
  memory	
  subsystem	
  or	
  NoC	
  work	
  

•  x86	
  only	
  
•  But	
  …	
  is	
  a	
  perfect	
  match	
  for	
  HPC	
  evaluaUon	
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SNIPER	
  HISTORY	
  
•  November,	
  2011:	
  SC’11	
  paper,	
  first	
  public	
  release	
  
•  March	
  2012,	
  version	
  2.0:	
  MulU-­‐program	
  workloads	
  
•  May	
  2012,	
  version	
  3.0:	
  Heterogeneous	
  architectures	
  
•  November	
  2012,	
  version	
  4.0:	
  Thread	
  scheduling	
  and	
  migraUon	
  
•  April	
  2013,	
  version	
  5.0:	
  MulU-­‐threaded	
  applicaUon	
  sampling	
  
•  June	
  2013,	
  version	
  5.1:	
  SuggesUons	
  for	
  opUmizaUon	
  visualizaUon	
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•  September	
  2013,	
  
version	
  5.2:	
  
	
  MESI/F,	
  2-­‐level	
  TLBs,	
  
	
  Python	
  scheduling	
  

•  Today:	
  700+	
  downloads	
  
from	
  60	
  countries	
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Sniper	
  generates	
  quite	
  a	
  few	
  staUsUcs,	
  
but	
  only	
  with	
  text	
  is	
  it	
  difficult	
  to	
  understand	
  
performance	
  details	
  

Text	
  output	
  from	
  Sniper	
  (sim.stats)	
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VISUALIZATION	
  



CYCLE	
  STACKS	
  

•  Where	
  did	
  my	
  cycles	
  go?	
  
•  CPI	
  stack	
  
– Cycles	
  per	
  instrucUon	
  
– Broken	
  up	
  in	
  components	
  

•  Normalize	
  by	
  either	
  
– Number	
  of	
  instrucUons	
  (CPI	
  stack)	
  
– ExecuUon	
  Ume	
  (Ume	
  stack)	
  

•  Different	
  from	
  miss	
  rates:	
  	
  
cycle	
  stacks	
  directly	
  quanUfy	
  	
  
the	
  effect	
  on	
  performance	
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CYCLE	
  STACKS	
  FOR	
  PARALLEL	
  APPLICATIONS	
  

By	
  thread:	
  heterogeneous	
  behavior	
  	
  
in	
  a	
  homogeneous	
  applicaUon?	
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USING	
  CYCLE	
  STACKS	
  TO	
  EXPLAIN	
  SCALING	
  
BEHAVIOR	
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USING	
  CYCLE	
  STACKS	
  TO	
  EXPLAIN	
  SCALING	
  
BEHAVIOR	
  
•  Scale	
  input:	
  applicaUon	
  becomes	
  DRAM	
  bound	
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USING	
  CYCLE	
  STACKS	
  TO	
  EXPLAIN	
  SCALING	
  
BEHAVIOR	
  
•  Scale	
  input:	
  applicaUon	
  becomes	
  DRAM	
  bound	
  
•  Scale	
  core	
  count:	
  sync	
  losses	
  increase	
  to	
  20%	
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VIZ:	
  CYCLES	
  STACKS	
  IN	
  TIME	
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VIZ:	
  ENERGY	
  OUTPUT	
  OVER	
  TIME	
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3D	
  VISUALIZATION:	
  IPC	
  VS.	
  TIME	
  VS.	
  CORE	
  



ARCHITECTURE	
  TOPOLOGY	
  VISUALIZATION	
  

•  System	
  topology	
  informaUon	
  
– With	
  IPC/MPKI/APKI	
  stats	
  for	
  each	
  component	
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SUGGESTIONS	
  FOR	
  OPTIMIZATION:	
  
	
  INSTRUCTIONS	
  VS.	
  TIME	
  PLOT	
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Expected	
  
trends	
  

Outlying	
  funcUons	
  
(more	
  Ume	
  per	
  insn)	
  



SUGGESTIONS	
  FOR	
  OPTIMIZATION:	
  
	
  ROOFLINE	
  MODEL	
  

26	
  

Peak	
  memory	
  
bandwidth	
  

Peak	
  FP	
  
performance	
  

S.	
  Williams,	
  A.	
  Waterman,	
  and	
  D.	
  A.	
  Pacerson,	
  “Roofline:	
  An	
  insightul	
  visual	
  performance	
  model	
  
for	
  mulUcore	
  architectures,”	
  CommunicaUons	
  of	
  the	
  ACM,	
  vol.	
  52,	
  no.	
  4,	
  pp.	
  65–76,	
  Apr.	
  2009.	
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H/W	
  UNDER/OVERSUBSCRIPTION	
  
•  Main	
  idea:	
  

–  For	
  Xeon-­‐Phi-­‐style	
  cores,	
  cache	
  performance	
  is	
  the	
  biggest	
  
indicator	
  of	
  performance	
  

•  Each	
  core	
  has	
  a	
  private	
  cache	
  hierarchy	
  
–  Private	
  L1	
  +	
  Private	
  L2	
  

•  Can	
  access	
  other	
  L2s	
  via	
  coherency	
  
•  Each	
  applicaUon	
  has	
  its	
  own	
  cache	
  scaling	
  characterisUcs	
  

–  We	
  see	
  cache	
  requirements	
  both	
  increasing,	
  and	
  decreasing	
  per	
  
core	
  
•  Increasing:	
  globally	
  shared	
  working	
  set	
  
•  Decreasing:	
  data	
  is	
  parUUoned	
  per	
  core	
  

•  By	
  controlling	
  the	
  core/thread	
  count	
  we	
  can	
  opUmize	
  
placement	
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POWER-­‐AWARE	
  HW/SW	
  CO-­‐OPTIMIZATION	
  

29	
  

•  Hooked	
  up	
  McPAT	
  (MulU-­‐Core	
  Power,	
  Area,	
  Timing	
  framework)	
  to	
  
Sniper’s	
  output	
  staUsUcs	
  

•  Evaluate	
  different	
  architecture	
  direcUons	
  (45nm	
  to	
  22nm)	
  with	
  
near-­‐constant	
  area	
  

•  Compare	
  performance,	
  energy	
  efficiency	
  

baseline:	
  2x	
  quad-­‐core	
  

8	
  cores	
  
16	
  cores,	
  no	
  L3,	
  stacked	
  DRAM	
  

16	
  slow	
  cores	
   16	
  thin	
  cores	
  

core	
  
cache	
  

[Heirman	
  et	
  al.,	
  PACT	
  2012]	
  



POWER-­‐AWARE	
  HW/SW	
  CO-­‐OPTIMIZATION	
  

•  Heat	
  transfer:	
  stencil	
  on	
  regular	
  grid	
  
–  Used	
  in	
  the	
  ExaScience	
  Lab	
  as	
  component	
  of	
  Space	
  Weather	
  modeling	
  
–  Important	
  kernel,	
  part	
  of	
  Berkeley	
  Dwarfs	
  (structured	
  grid)	
  

•  Improve	
  memory	
  locality:	
  Uling	
  over	
  mulUple	
  Ume	
  steps	
  
–  Trade	
  off	
  locality	
  with	
  redundant	
  computaUon	
  
–  OpUmum	
  depends	
  on	
  relaUve	
  cost	
  (performance	
  &	
  energy)	
  

of	
  computaUon,	
  data	
  transfer	
  à	
  requires	
  integrated	
  simulator	
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compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-e⌅cient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of
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Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].
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Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology
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and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading o� data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm e⌅ciency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of
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Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8�8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].
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Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work o�sets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading o� the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is di⌅cult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this a�ects energy consumption and performance.
This reinforces the need for a fast simulation methodology
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Figure 9: Hardware/software co-design for the heat benchmark when optimizing for performance and energy
e�ciency: four architecture design points are considered while varying software parameters such as tile size
(see legend) and arithmetic intensity (horizontal axes).

for performance and power to explore these trade-o�s and
hardware/software interactions.

7.3 Co-design analysis
Figure 9 plots the simulation results for hard-

ware/software co-design for the heat benchmark application.
The grid domain is 4096�4096 elements. This domain is
split up into square tiles measuring between 32 and 512 data
points on each side. The complete domain is 128 MB in total
and does not fit in the last-level cache for any of the archi-
tectures considered, so tiles always have to be loaded from
main memory. The number of time steps performed on each
tile before moving on to the next one varies between 1 and
65 steps. The graphs plot the achieved number of time steps
per second, or per Joule of consumed energy, as a function of
arithmetic intensity. The performance graphs in Figure 9(a)
follow the basic roofline model from Figure 8: initially, in-
creasing the number of time steps improves performance,
which later falls back once the amount of redundant com-
putation becomes too high. Additionally, each architecture
has an optimal tile size which maximizes data reuse while
still fitting in the cache. For example, the 8-core design point
reach a performance level of around 150 simulated time steps
per second, using a tile size of 128�128. The working set of
this application is two tiles worth of data, corresponding to
the previous and current time steps. At one double-precision
floating-point number or 8 bytes per element, the working
set of 256 KB for the 1282-sized tile fits in a core’s private
512 KB L2 cache, whereas for the larger 2562 tiles it does
not — which makes performance significantly lower than
that predicted by the roofline model. The three other ar-
chitectures, which have an L2 cache of only 256 KB, reach
their optimal performance using the smaller 642 tiles.

If we consider the e�ect of arithmetic intensity on energy
rather than performance, we see that generally the optimum
has shifted towards the left, meaning that less redundant
work — and a slightly increased access rate to main mem-

ory — is preferred. This is because the ratio between access
times of caches and DRAM is very high, making the perfor-
mance aspect of more redundant work cheap when compared
to extra DRAM accesses. On the other hand, when compar-
ing the energy cost of DRAM accesses versus that of extra
computation, the ratio is lower which makes the relative cost
of the redundant work higher. Note that this extra cost con-
sists of not just extra floating-point operations, which are in
themselves very cheap (in the order of 0.5 nJ per double-
precision operation, vs. 100 nJ per DRAM access1) but
also the cost of extra instructions flowing through all stages
of the out-of-order pipeline, extra cache accesses, etc. (In
Figure 5, floating-point ALU energy represents only a small
fraction of total core energy.)

When considering performance alone, the 3D architecture
clearly wins for this benchmark. The additional bandwidth
of the 3D stacked memory allows for a steeper performance
slope in the leftmost part of the performance graph, while
the availability of 16 full-sized cores results in the highest
peak performance across all architecture design points con-
sidered. Yet, tiles have to be kept small enough such that
they fit in L2 cache; this architecture does not have an L3
cache so the cost of L2 misses, which become significant
with tile sizes larger than 642, is much higher here than in
the other architectures.

On the other hand, the low-frequency architecture, while
being less high-performance than both the 8-core and 3D
design points, reaches the highest energy e⌅ciency. Because
this application scales fairly good with core count, and the
power envelope of the low-frequency chip is still modest, one
could even consider another doubling of the number of cores
which should almost double performance at very little addi-
tional cost in energy.

1According to the relevant component in the dynamic en-
ergy stacks computed by Sniper/McPAT, scaled by the num-
ber of FP operations or DRAM accesses throughout the
benchmark, respectively.
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