GDB, so where are we now?

Status of GDB’s ongoing target and run control projects.

Pedro Alves

Red Hat

2014-02-02 Sun

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 1/55

© Introduction

© GDBserver

© Remote Serial Protocol

@ Local vs remote feature parity
Q I/t sets

@ All-stop vs non-stop modes
@ All-stop Ul on top of non-stop target
© Target async by default

© Multi-process debugging

@ Multi-target

@ Reverse debugging

@ End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 2 /55

Topic

@ Introduction

Pedro Alves (Red Hat) GDB, so where are we now?

License

o License: Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)
@ http://creativecommons.org/licenses/by-sa/4.0/

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 4 / 55

http://creativecommons.org/licenses/by-sa/4.0/

Current mess

set non-stop on/off

set target-async on/off

set scheduler-locking on/of /step
set schedule-multiple on/off

‘target remote’ vs ‘target extended-remote’

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun

Where we're headed

WORLD DOMINATION

Local/Remote feature parity T sets Async by default Multi-process Multi-target

l

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can non-stop (done)

.

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now?

Topic

© GDBserver

Pedro Alves (Red Hat) GDB, so where are we now?

GDBserver, what's that?

@ For native/local debugging on the host, GDB alone is sufficient.

e spawn processes (“run”)
e attach to existing processes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 8 / 55

GDBserver, how's that?

@ For remote / cross debugging, GDB connects to something on
the target end.

RSP
4—»| Remote target

@ bare metal embedded systems — remote stub, debug probe.
@ emulators — builtin RSP implementation
e GNU/Linux (and others) — the GDBserver program.

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 9/ 55

GDBserver, basic usage

GDBserver

$ gdbserver :9999 a.out
Process /tmp/a.out created; pid = 22952
Listening on port 9999

$ gdb /tmp/a.out

Reading symbols from /tmp/a.out...done.

(gdb) target remote :9999

Remote debugging using :9999

0x000000323d001530 in _start () from \
/1ib64/1d-1inux-x86-64.80.2

(gdb)

o’

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 10 / 55

Topic

© Remote Serial Protocol

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 11 / 55

Remote Serial Protocol (RSP)

o Client/Server model
o GDB == Client
@ runs on the host

o Target == Server

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 12 / 55

Remote Serial Protocol (RSP)

o Client/Server model
o GDB == Client
@ runs on the host

o Target == Server
@ Variety of transports

e Serial

o TCP/IP

o UDP/IP

e POSIX pipes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 12 / 55

Remote Serial Protocol (RSP)

o (Mostly) text-based

© = m aabb5aabb,4 (read 4 bytes at Oxaab5aabb)
Q@ <« £f00f£00 (here's your bytes)
© = Z0 0x1234 (insert breakpoint at 0x1234)
Q < 0K
© Frame format;
‘S’ packet-data ‘#' checksum

@ Try ‘(gdb) set debug remote 1’ to see all the RSP traffic.
https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 13 / 55

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

@ Local vs remote feature parity

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 14 / 55

T sets

l

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can non-stop (done)

.

Target can async (done)

Async by default Multi-process Multi-target

Pedro Alves (Red Hat) GDB, so where are we now? 14-02-02 Sun

Local vs remote debugging

@ Should be transparent, right?

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 15 / 55

| wish it were so

Local/Remote feature set comparison
GDB (native) GDBserver

tracepoints / IPA

catch syscall

access memory of
running thread

fork/vfork/exec
following

base
debugging

can link to /
libthread_db statically

globbing / parameter
expansion

thread names

(...)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 16 / 55

GDBserver, in blocks

GDB GDBserver

tracepoints

interpreters
cLl Mi (others) breakpoints
RSP execution
SERER control

target interface

language

arget interface

X

. stack / frame
C/C++/0bjC/ analysis
Ada / Fortran /

native target
(ptrace on GNU/Linux,

native target

Go/ D/ ... Win32 debug API,
etc.) (ptrace on GNU/Linux,
Win32 debug API,
breakpoint etc.)
execution
control

(break, watch
catch, trace)

RSP client)

(target remote)

architecture

x86 / ARM

(DWARF/ELF/etc.) Aarch64 / MIPS /

*

Pedro Alves (Red Hat) GDB, so where are we now?

Surprise, we love code duplication

@ GDBserver's native target code != GDB's native target code

GDB GDBserver
interpreters tracepoints
‘ cu ‘ ‘ Mi (others) ‘
RSP
target interface server
language
stack / frame
C/C++/0bjC/ analysis native target > target interface
Ada / Fortran / (ptrace on GNU/Linux,
Go/ D/... Win32 debug API, native target
etc.) (ptrace on GNU/Linux,
Win32 debug API,

Breakpolnt execution Simulator etc.)
(break, watch control (target sim)
catch, trace)
RSP client
(target remote)

symbol handling core dump

x86 / ARM
(DWARF/ELF/etc.) Aarch64 / MIPS /

Pedro Alves (Red Hat) GDB, so where are we now?

Bright idea

@ Gosh, we could share all that code, couldn’t we?

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 19 / 55

GDBserver-only features

tracepoints
fast tracepoints / in-process agent (IPA)

°
°
@ can access memory of running thread
@ other libcs (uCLinux/uClibc, Android, etc.)
o static 1ibthread_db.a, no 1libthread_db at all.

misc others

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 20 / 55

Native-only features, part 1

o fork/vfork/exec

o set follow-fork-mode (child/parent)
e catch fork/vfork/exec

@ catch syscall
o ‘(gdb) set environment FOO=bar’

@ set inferior cwd

o (gdb) cd somewhere
o (gdb) pwd

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 21 /55

Native-only features, part 2

@ use shell to start program (globbing, wildcard expansion and 1/0
redirection)

$ gdb /usr/bin/ls

(gdb) run *
Starting program: /usr/bin/ls *
1 2

[Inferior 1 (process 4750) exited normally]

GDBserver

Process /usr/bin/ls created; pid = 5260
/usr/bin/ls: cannot access *: No such file or directory
Child exited with status 2

4

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 22 /55

Native-only features, part 3

@ GDB can set/show (user defined) thread names:

Example (Thread names)

(gdb) info threads
Id Target Id

* 1 Thread 0x77fc9740 (LWP 932) "foo'" main () at foo.c:29

(gdb) thread name bar
(gdb) info threads
Id Target Id

* 1 Thread 0x77£fc9740 (LWP 932) "bar'" main () at foo.c:29

(gdb)

Frame

~a

Frame

~a

4

Pedro Alves (Red Hat)

GDB, so where are we now?

2014-02-02 Sun

23 / 55

Yet more missing features when remote debugging

@ Others:

o Attach auto-load exec
o Graceful handling of leader thread exiting
o Inferior 10

o More. ..

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 24 / 55

Other differences

@ Synching inferior thread list needs explicit “info threads”.
@ “info threads” output different between native/remote:

(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fcc740 (LWP 19056) "test" main ()
at test.c:35

v

GDBserver
(gdb) info threads
Id Target Id Frame
* 1 Thread 19056 main () at test.c:35

v

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 25 / 55

Current direction

© GDBserver > GDB (targets backends)
© Drop GDB's backends

@ Project is tracked here:
https:/ /sourceware.org/gdb /wiki/LocalRemoteFeatureParity

@ Related:
https:/ /sourceware.org/gdb /wiki/Common

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 26 / 55

https://sourceware.org/gdb/wiki/LocalRemoteFeatureParity
https://sourceware.org/gdb/wiki/Common

Q !/t sets

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 27 / 55

Local/Remote feature parity Async by default Multi-process

Multi-target

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can non-stop (done)

.

Target can async (done)

Pedro Alves (Red Hat) DB, so where are we now?

inferior /thread sets, history 1

Currently GDB can debug:
o multi-threaded programs

@ programs composed of multiple processes

By default:
@ any event triggers in the debugged program = all threads stop

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 28 / 55

inferior /thread sets, history 2

Too intrusive when debugging live running systems

@ Enter non-stop mode (GDB 7.0)
o Keep all threads running, except the thread that hit the event

[The old (and default) mode was named the all-stop mode]

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 29 / 55

inferior/thread sets, history 3

All or nothing. ..
@ Not flexible enough.

Desirable to group related threads, and apply group actions, e.g.:
@ step, continue, etc.
@ set breakpoints specific to said groups or sets

@ specify what should be implicitly paused when a breakpoint
triggers

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 30 / 55

inferior /thread sets, specs

@ collection/combination of execution/scoping objects:
o inferiors/processes, threads, cores, Ada tasks, etc.

ranges and wildards

assignable names

union (,) and intersection (.) operators

set negation ()

refer to current and/or future entities

predefined sets:
o all threads, all running, all stopped, etc.

Example (a spec)

‘stopped.i2.c3-5,t3'’

@ every thread of inferior 2, running on cores 3 to 5, but actually
stopped

@ plus thread 3
Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 31 /55

inferior /thread sets specs, examples

[scope TRIGGER-SET] break [-stop STOP-SET] LINESPEC
(gdb) scope t3 break -stop il main

(gdb) all> scope il
Current scope is inferior 1.
(gdb) i1>

(gdb) all> step

(gdb) i1> step

(gdb) t1> step

(gdb) il> step -p t2,t3
(gdb) i1> step -p cl

(gdb) i1> scope i1,i2 step

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 32 /55

@ All-stop vs non-stop modes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 33 /55

Local/Remote feature parity T sets Async by default Multi-process Multi-target

l

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can async (done)

Pedro Alves (Red Hat) DB, so where are we now? 02 Sun 34 / 55

all-stop vs non-stop modes

@ user-visible differences
o target-side / RSP differences

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 34 / 55

all-stop vs non-stop modes, user visible differences

Different user-visible behavior:

o All-stop always stops all threads

@ Non-stop leaves threads running

o All-stop always switches current thread to thread that last
stopped

@ Non-stop never switches the current thread

@ In non-stop, resumption commands only apply to the current
thread, unless explicitly overriden

@ In all-stop, what's resumed depends on the
scheduler-locking setting (and more).

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 35 / 55

all-stop vs non-stop modes, target backend / RSP

differences

RSP, resumes are

© — vCont;c (continue)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

all-stop vs non-stop modes, target backend / RSP

differences

RSP, resumes are

© — vCont;c (continue)
@ (program continues)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

all-stop vs non-stop modes, target backend / RSP

differences

RSP, resumes are

© — vCont;c (continue)
@ (program continues)
©@ — TO5 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

all-stop vs non-stop modes, target backend / RSP

differences

RSP, resumes are

© — vCont;c (continue)
@ (program continues)
©@ — TO5 ... ;thread:999 (stopped with SIGTRAP)

@ Can't send another packet while the program is running.
Can't insert/remove breakpoints
Can't list threads
Can’t inspect globals
Can only explicitly stop target
@ interrupt request byte 0x03 (no packet structure)

@ Or ... wait for the target to stop itself

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

Non-stop RSP, asynchronous notifications

Asynchronous notifications!

@ Initiated by the server
@ Can be sent at any time, even when target is running

@ Just like other packets but start with ‘%" instead of ‘Y’
(at the frame level)

o Currently defined:
e %Stop: <regular stop reply here>

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 37 /55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Example (insert breakpoint while program is running)

© — vCont;c (continue all threads)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Example (insert breakpoint while program is running)

© — vCont;c (continue all threads)
@ — 0K (immediate reply) (program continues)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Example (insert breakpoint while program is running)

© — vCont;c (continue all threads)
@ — 0K (immediate reply) (program continues)
© — Z0 <addri> (Insert breakpoint)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Example (insert breakpoint while program is running)

© — vCont;c (continue all threads)

@ — 0K (immediate reply) (program continues)
© — Z0 <addri> (Insert breakpoint)

Q — K

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Example (insert breakpoint while program is running)

© — vCont;c (continue all threads)

@ — 0K (immediate reply) (program continues)
© — Z0 <addri> (Insert breakpoint)

Q — 0K

© (program eventually hits breakpoint)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

@ In the non-stop RSP variant, resumes are asynchronous

@ Other RSP traffic possible while the target is running!

Example (insert breakpoint while program is running)

© — vCont;c (continue all threads)
@ — 0K (immediate reply) (program continues)
© — Z0 <addri> (Insert breakpoint)

Q — 0K
© (program eventually hits breakpoint)
Q — /Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

@ All-stop Ul on top of non-stop target

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 39 /55

Local/Remote feature parity T sets Async by default Multi-process Multi-target

l

Finer grained control of threads

ﬁ

l

Target can non-stop (done)

.

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now?

14-02-02 Sun 40 / 55

All-stop Ul on top of non-stop target

What:
@ always connect using the non-stop RSP variant
@ present the all-stop behavior to the user
Why:
@ Just one specific case in an i/t sets world — useful as incremental
milestone.

@ Allows true remote async

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 40 / 55

© Target async by default

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 41 / 55

T sets

l

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can non-stop (done)

.

Target can async (done)

Local/Remote feature parity Multi-process

Multi-target

Pedro Alves (Red Hat) DB, so where are we now?

sync mode (what we always had by default)

Pedro Alves (Red Hat)

y

| Wait for user |

v

—)| Insert breakpoints |

| Step or Continue |

v

| Wait for target |

!

| Remove breakpoints

No e Yes

GDB, so where are we now?

2014-02-02 Sun

42 / 55

async mode (not the default yet)

Vv oy

| Wait for event |

stdin target

Y | Remove breakpoints |
| Command |
Yes
No
Y

Yes

Execution? Insert breakpoints

v

No | Step/Continue |

I

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 43 / 55

async mode (not the default yet)

(gdb) c&

Asynchronous execution not supported on this target.
(gdb) set target-async on

info threads
Id Target Id
3 Thread 11457
2 Thread 11456
*x 1 Thread 11452
(gdb) c&
Continuing.
(gdb) info threads
Id Target Id
3 Thread 11457
2 Thread 11456
* 1 Thread 11452
(gdb) interrupt

Pedro Alves (Red Hat)

Frame

0x004babed in foo () at foo.c:82
0x004ba6ed in foo () at foo.c:82
0x00408e60 in bar () at bar.c:93

Frame

(running)
(running)
(running)

GDB, so where are we now? 2014-02-02 Sun

44 / 55

© Multi-process debugging

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 45 / 55

T sets

l

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can non-stop (done)

.

Target can async (done)

Local/Remote feature parity Async by default Multi-target

Pedro Alves (Red Hat) GDB, so where are we now?

14-02-02 Sun 46 / 55

multi-process debugging

@ Can debug several GNU/Linux programs under the same GDB
session since “7.2.

e Working on scalability now

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 46 / 55

@ Multi-target

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 47 / 55

Local/Remote feature parity T sets Async by default Multi-process

l

Finer grained control of threads

\

All-stop on top of non-stop

l

Target can non-stop (done)

.

Target can async (done)

Pedro Alves (Red Hat) DB, so where are we now?

multi-target

Make it possible for users to connect to multiple targets at once:

@ connect to multiple GDBservers at the same time
@ freely mix native, remote, and core-file debugging

https://sourceware.org/gdb /wiki/MultiTarget

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 48 / 55

https://sourceware.org/gdb/wiki/MultiTarget

multi-target

@ The branch is already functional
Lots of global state needed to cleaned up. Some more to go.

Native GNU/Linux v/

Core support v
Remote almost
all others. . .. X

@ Target stack design
@ User-interface not fully baked yet
o add-inferior -new-target
Change GDB to handle the same PID coming from multiple
targets.
Needs target-async
e can't block waiting for a single remote file descriptor
@ The usual: tests and documentation

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 49 / 55

@ Reverse debugging

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 50 / 55

Running programs backwards

reverse-step{,stepi,next,nexti,finish}, rc, rs, rsi, rni

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 51 / 55

Running programs backwards

e w/ ‘target remote’ = target does the hard work

o Often simulators/emulators
o Only two packets necessary:

@ ‘bc’ - backward continue
o ‘bs’ - backward step

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 52 / 55

Running programs backwards

@ Built-in process record and replay
o “full” version:
o allows replaying and reverse execution
force single-stepping, parses instructions, records effects
slow
single-threaded only
slow
x86/x86-64 GNU /Linux
slow
ARM GNU/Linux improved in 7.7 (syscall instruction recording,
thumb32)
o Intel’s branch trace (btrace) recording (GDB mainline)
e h/w assisted (Branch Trace Store / BTS)
o per-thread branch trace
e does not record data
o allows limited replay and reverse execution

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 53 / 55

@ End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 54 / 55

@ Questions

@ <palves@redhat.com>

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 55 / 55

	Introduction
	GDBserver
	Remote Serial Protocol
	Local vs remote feature parity
	I/t sets
	All-stop vs non-stop modes
	All-stop UI on top of non-stop target
	Target async by default
	Multi-process debugging
	Multi-target
	Reverse debugging
	End

