Current State of IEEE 802.15.4/6LoWPAN Stack inside the Linux Kernel

FOSDEM 2014

Alexander Aring
Pengutronix
<aar@pengutronix.de>
Topics of Discussion

- Project history
- Introduction
- Linux implementation
- Future work
- Demo
Project history

• Project started in 2008
 • Project name „linux-zigbee“
 • ZigBee is an alternative to 6LoWPAN
 • License issues: ZigBee stack into kernelspace
 • Possible not released userspace ZigBee stack?

• Now: Project aims to implement 6LoWPAN
 • Open standard
 • Based on IEEE 802.15.4 networks
 • Additional 6LoWPAN upper layer protocols
 • Mainline since year 2009
Introduction
IEEE 802.15.4 and 6LoWPAN

- MAC-Layer: IEEE 802.15.4
 - Low-Rate Wireless Personal Area Networks

- 6LoWPAN
 - IPv6 over Low power Wireless Personal Area Networks
 - RFC4944 - Transmission of IPv6 Packets
 - RFC6282 - IPv6 Header Compression

- Areas of Applications
 - Sensor networks
 - Home and industrial automation

- Related work: ContikiOS
 - Most used 6LoWPAN stack implementation
 - Small stack implementation
Linux implementation
IPv6 - Architecture

Application layer
Socket layer
Transport layer
Packet layer
Ethernet interface
Linux implementation

6LoWPAN - Architecture

- Application layer
- Socket layer
- Transport layer
- Packet layer
- lowpan interface
- 6LoWPAN adaptation layer
- IEEE 802.15.4 interface
Linux implementation
6LoWPAN adaptation layer

- Compression of the 40 bytes IPv6 header
 - Version, traffic class, flow-label, hop-limit
 - Addresses (link-local, multicast)
 - We can remove the payload length
 - Smallest 6LoWPAN header: 3 bytes

- Compression of transport header
 - For example UDP has normally 8 bytes
 - Special port ranges and removing of checksum
 - Smallest UDP 6LoWPAN header: 5 bytes

- 6LoWPAN fragmentation
 - 127 (IEEE 802.15.4) to 1280 (IPv6) MTU
Linux implementation
Experienced issues

• Started with kernel version 3.8

• Tried to ping another 6LoWPAN node
 • Worked with non link-local addresses only
 • Fragmented 6LoWPAN packets did work in a Linux to Linux communication only
 • Got race conditions while fragmentation

• Run an UDP application
 • Random null pointer dereferences occurred
 • Didn't work on UDP 6LoWPAN port ranges
Linux implementation

Fixed issues

- IPHC (IPv6 Header Compression)
 - Address compression/uncompression
 - Did never work correctly
 - Reimplement necessary functions
 - UDP compression/uncompression
 - Byte ordering issues
 - Wrong pointer arithmetic (Null pointer problem)
 - Reverse source/destination port ordering

- Static IEEE 802.15.4 header size value
 - IEEE 802.15.4 header has a dynamic size
 - Size determined by flow control field
 - Value used in fragmentation for reconstruction
Linux implementation

Known existing issues

6LoWPAN Fragmentation

- Isn't RFC compliant
- Still having race conditions
- Issues with ACK handling on MAC layer
 - No Data Sequence Number increment
 - ACKs do not work correctly

→ There are patches for a solution
 - Which is RFC compliant
 - No race conditions
 - Idea: Implement it like IPv6 fragmentation
 - Put the increment of DSN on the right place
Linux Implementation
What we have done now?

• Before
 • Ping to a contiki device wasn't possible
 • Suddenly Linux kernel crashed

• Now
 • Use of link-local addresses works
 • Connection to a contiki device works
 • IPHC and fragmentation is RFC complaint

• Bluetooth 6LoWPAN
 • Share IPv6 header compression format
 • Improving 6LoWPAN implementation
Future Work

6LoWPAN upper layer protocols

- RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
 - Route-over: ICMPv6
 - Prototype implementation: SimpleRPL by Tony Cheneau
 - Limited functionality
 - Has lot of dependencies: python, zeromq, ...

- Neighbor Discovery Optimization for 6LoWPAN
 - Optimization for non-multicast MAC-Layer
 - Need some great idea to implement it
 - Problem: Possible handling in 6LoWPAN adaptation layer?

- CoAP for Userspace (Constrained Application Protocol)
 - HTTP for sensor networks but UDP based
 - Tested libcoap successful under Linux
Thanks!

Project Website:
http://sourceforge.net/projects/linux-zigbee/

Mailing list:
linux-zigbee-devel@lists.sourceforge.net

Special Thanks to:
• Werner Almesberger
• Tony Cheneau
• Alan Ott