
D-Bus in the Kernel

FOSDEM 2014, Brussels, Belgium

January 2014

D-Bus in the Kernel



Who?

Greg Kroah-Hartman,
Daniel Mack,

Lennart Poettering,
Kay Sievers

with help from Tejun Heo

D-Bus in the Kernel



Most newer OS designs started around powerful IPC

Mach, QNX, Hurd, . . .

Linux only had IPC primitives (sockets, fifos, shared memory)

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions,

Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals,

Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties,

OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO,

Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,

Discovery, Introspection, Policy, Activation, Synchronization,
Type-safe Marshalling, Security, Monitoring, exposes APIs/not

streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery,

Introspection, Policy, Activation, Synchronization,
Type-safe Marshalling, Security, Monitoring, exposes APIs/not

streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection,

Policy, Activation, Synchronization,
Type-safe Marshalling, Security, Monitoring, exposes APIs/not

streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy,

Activation, Synchronization,
Type-safe Marshalling, Security, Monitoring, exposes APIs/not

streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation,

Synchronization,
Type-safe Marshalling, Security, Monitoring, exposes APIs/not

streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling,

Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security,

Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring,

exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams,

Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials,

File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing,

Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic,

Network transparency, no trust required, High-level error
concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency,

no trust required, High-level error
concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required,

High-level error
concept. . .

D-Bus in the Kernel



D-Bus is powerful IPC

Method Call Transactions, Signals, Properties, OO, Broadcasting,
Discovery, Introspection, Policy, Activation, Synchronization,

Type-safe Marshalling, Security, Monitoring, exposes APIs/not
streams, Passing of Credentials, File Descriptor Passing, Language
agnostic, Network transparency, no trust required, High-level error

concept. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus has limitations

Suitable only for control, not payload

It’s inefficient (10 copies, 4 complete validations, 4 context
switches per duplex method call transaction)

Credentials one can send/recv are limited

No implicit timestamping

Not available in early boot, initrd, late boot

Hookup with security frameworks happens in userspace

Activatable bus services are independent from other system services

Codebase is a bit too baroque, XML, . . .

No race-free exit-on-idle bus activated services

. . .

D-Bus in the Kernel



D-Bus is fantastic, solves real problems

Right approach: good concepts, generic, comprehensive, covers all
areas

Established, it’s the single most used local, high-level IPC system
on Linux, bindings for most languages

Used in init system (regardless if systemd or Upstart), the
desktops, embedded, . . .

D-Bus in the Kernel



D-Bus is fantastic, solves real problems

Right approach: good concepts, generic, comprehensive, covers all
areas

Established, it’s the single most used local, high-level IPC system
on Linux, bindings for most languages

Used in init system (regardless if systemd or Upstart), the
desktops, embedded, . . .

D-Bus in the Kernel



D-Bus is fantastic, solves real problems

Right approach: good concepts, generic, comprehensive, covers all
areas

Established, it’s the single most used local, high-level IPC system
on Linux, bindings for most languages

Used in init system (regardless if systemd or Upstart), the
desktops, embedded, . . .

D-Bus in the Kernel



D-Bus is fantastic, solves real problems

Right approach: good concepts, generic, comprehensive, covers all
areas

Established, it’s the single most used local, high-level IPC system
on Linux, bindings for most languages

Used in init system (regardless if systemd or Upstart), the
desktops, embedded, . . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



kdbus

Suitable for large data (GiB!), zero-copy, optionally reusable

It’s efficient (2 or fewer copies, 2 validations, 2 context switches
per duplex methd call transaction)

Credentials sent along are comprehensive (uid, pid, gid, selinux
label, pid starttime, tid, comm, tid comm, argv, exe, cgroup, caps,

audit, . . . )

Implicit timestamping

Always available, from earliest boot to latest shutdown

Open for LSMs to hook into from the kernel side

Activation is identical to activation of other services

Userspace is much simpler, no XML, . . .

Priority queues, . . .

Race-free exit-on-idle for bus activated services

. . .

D-Bus in the Kernel



Overview

Receiver buffers

Single copy to destination(s)

Method call windows

Name registry

D-Bus in the Kernel



Overview

Receiver buffers

Single copy to destination(s)

Method call windows

Name registry

D-Bus in the Kernel



Overview

Receiver buffers

Single copy to destination(s)

Method call windows

Name registry

D-Bus in the Kernel



Overview

Receiver buffers

Single copy to destination(s)

Method call windows

Name registry

D-Bus in the Kernel



Overview

Receiver buffers

Single copy to destination(s)

Method call windows

Name registry

D-Bus in the Kernel



memfds

File descriptors for memory regions

Zero Copy!

Sealing

At 512K zero copy is faster than single copy

(a bit like Android ashmem)

D-Bus in the Kernel



memfds

File descriptors for memory regions

Zero Copy!

Sealing

At 512K zero copy is faster than single copy

(a bit like Android ashmem)

D-Bus in the Kernel



memfds

File descriptors for memory regions

Zero Copy!

Sealing

At 512K zero copy is faster than single copy

(a bit like Android ashmem)

D-Bus in the Kernel



memfds

File descriptors for memory regions

Zero Copy!

Sealing

At 512K zero copy is faster than single copy

(a bit like Android ashmem)

D-Bus in the Kernel



memfds

File descriptors for memory regions

Zero Copy!

Sealing

At 512K zero copy is faster than single copy

(a bit like Android ashmem)

D-Bus in the Kernel



memfds

File descriptors for memory regions

Zero Copy!

Sealing

At 512K zero copy is faster than single copy

(a bit like Android ashmem)

D-Bus in the Kernel



Signal Broadcasting

Bloom Filters

Every broadcast message includes bloom filter (calculated by
sender) that contains all supported matches, kernel will then simply
check receiver bloom filter mask (calculated by receiver) against it.

Bloom filter uses SipHash, but kernel doesn’t care

D-Bus in the Kernel



Signal Broadcasting

Bloom Filters

Every broadcast message includes bloom filter (calculated by
sender) that contains all supported matches, kernel will then simply
check receiver bloom filter mask (calculated by receiver) against it.

Bloom filter uses SipHash, but kernel doesn’t care

D-Bus in the Kernel



Signal Broadcasting

Bloom Filters

Every broadcast message includes bloom filter (calculated by
sender) that contains all supported matches, kernel will then simply
check receiver bloom filter mask (calculated by receiver) against it.

Bloom filter uses SipHash, but kernel doesn’t care

D-Bus in the Kernel



Signal Broadcasting

Bloom Filters

Every broadcast message includes bloom filter (calculated by
sender) that contains all supported matches, kernel will then simply
check receiver bloom filter mask (calculated by receiver) against it.

Bloom filter uses SipHash, but kernel doesn’t care

D-Bus in the Kernel



Policy:

No XML, only simple ACL policy attached to service names

More fine-grained access control needs to be done in userspace,
but it’s much easier

Use capability checks!

PolicyKit

D-Bus in the Kernel



Policy:

No XML, only simple ACL policy attached to service names

More fine-grained access control needs to be done in userspace,
but it’s much easier

Use capability checks!

PolicyKit

D-Bus in the Kernel



Policy:

No XML, only simple ACL policy attached to service names

More fine-grained access control needs to be done in userspace,
but it’s much easier

Use capability checks!

PolicyKit

D-Bus in the Kernel



Policy:

No XML, only simple ACL policy attached to service names

More fine-grained access control needs to be done in userspace,
but it’s much easier

Use capability checks!

PolicyKit

D-Bus in the Kernel



Policy:

No XML, only simple ACL policy attached to service names

More fine-grained access control needs to be done in userspace,
but it’s much easier

Use capability checks!

PolicyKit

D-Bus in the Kernel



Differences in Userspace:

GVariant used for marshalling (O(1) random access to struct and
array fields)

Setup, activation, policy management, driver, proxy lives in
systemd

New libsystemd-bus client library: waaaaay nicer to use – but not
portable to non-Linux

D-Bus in the Kernel



Differences in Userspace:

GVariant used for marshalling (O(1) random access to struct and
array fields)

Setup, activation, policy management, driver, proxy lives in
systemd

New libsystemd-bus client library: waaaaay nicer to use – but not
portable to non-Linux

D-Bus in the Kernel



Differences in Userspace:

GVariant used for marshalling (O(1) random access to struct and
array fields)

Setup, activation, policy management, driver, proxy lives in
systemd

New libsystemd-bus client library: waaaaay nicer to use – but not
portable to non-Linux

D-Bus in the Kernel



Differences in Userspace:

GVariant used for marshalling (O(1) random access to struct and
array fields)

Setup, activation, policy management, driver, proxy lives in
systemd

New libsystemd-bus client library: waaaaay nicer to use – but not
portable to non-Linux

D-Bus in the Kernel



Proxy: provides compatibility with dbus1 sockets

Synthesizes obsolete AcquiredName, LostName, Hello messages

Implements XML policy

Activated on demand, exits on idle

Remarshals gvariant/dbus1

D-Bus in the Kernel



Proxy: provides compatibility with dbus1 sockets

Synthesizes obsolete AcquiredName, LostName, Hello messages

Implements XML policy

Activated on demand, exits on idle

Remarshals gvariant/dbus1

D-Bus in the Kernel



Proxy: provides compatibility with dbus1 sockets

Synthesizes obsolete AcquiredName, LostName, Hello messages

Implements XML policy

Activated on demand, exits on idle

Remarshals gvariant/dbus1

D-Bus in the Kernel



Proxy: provides compatibility with dbus1 sockets

Synthesizes obsolete AcquiredName, LostName, Hello messages

Implements XML policy

Activated on demand, exits on idle

Remarshals gvariant/dbus1

D-Bus in the Kernel



Proxy: provides compatibility with dbus1 sockets

Synthesizes obsolete AcquiredName, LostName, Hello messages

Implements XML policy

Activated on demand, exits on idle

Remarshals gvariant/dbus1

D-Bus in the Kernel



Driver: translates driver method calls into ioctl calls

org.freedesktop.DBus pseudo-service is a real service on kdbus

Note that driver signals are synthesized on client side, so the driver
only handles method calls

Activated on demand, exits on idle

D-Bus in the Kernel



Driver: translates driver method calls into ioctl calls

org.freedesktop.DBus pseudo-service is a real service on kdbus

Note that driver signals are synthesized on client side, so the driver
only handles method calls

Activated on demand, exits on idle

D-Bus in the Kernel



Driver: translates driver method calls into ioctl calls

org.freedesktop.DBus pseudo-service is a real service on kdbus

Note that driver signals are synthesized on client side, so the driver
only handles method calls

Activated on demand, exits on idle

D-Bus in the Kernel



Driver: translates driver method calls into ioctl calls

org.freedesktop.DBus pseudo-service is a real service on kdbus

Note that driver signals are synthesized on client side, so the driver
only handles method calls

Activated on demand, exits on idle

D-Bus in the Kernel



Activation: new .busname unit type in systemd

Identical to .socket unit types for socket activation

dbus1 bus activation files still supported, but only for clients
connecting via the proxy

D-Bus in the Kernel



Activation: new .busname unit type in systemd

Identical to .socket unit types for socket activation

dbus1 bus activation files still supported, but only for clients
connecting via the proxy

D-Bus in the Kernel



Activation: new .busname unit type in systemd

Identical to .socket unit types for socket activation

dbus1 bus activation files still supported, but only for clients
connecting via the proxy

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



libsystemd-bus

New client library, designed to be easy to use

Not portable to non-Linux

Assemble and parse messages with format strings

Handles introspection, signal dispatching, method vtables,
properties, object manager

Lots of convenience functions

Focus on converting errno from/to bus errors

Connect to container, connect to remote

Credentials include units, slices, sessions, . . .

It’s probably what you want to use when you hack on system level
software, and up

D-Bus in the Kernel



Android binder

Some similar technical concepts, different semantics

No name registry, no broadcasts, no ordering

D-Bus in the Kernel



Android binder

Some similar technical concepts, different semantics

No name registry, no broadcasts, no ordering

D-Bus in the Kernel



Android binder

Some similar technical concepts, different semantics

No name registry, no broadcasts, no ordering

D-Bus in the Kernel



When?

It’s all in kdbus git, and systemd git, now!

Compile-time switch in systemd

We hope to get kdbus reviewed and accepted into the kernel in
2014

gdbus support coming soon, also libdbus1 support

Google for git repos!

D-Bus in the Kernel



When?

It’s all in kdbus git, and systemd git, now!

Compile-time switch in systemd

We hope to get kdbus reviewed and accepted into the kernel in
2014

gdbus support coming soon, also libdbus1 support

Google for git repos!

D-Bus in the Kernel



When?

It’s all in kdbus git, and systemd git, now!

Compile-time switch in systemd

We hope to get kdbus reviewed and accepted into the kernel in
2014

gdbus support coming soon, also libdbus1 support

Google for git repos!

D-Bus in the Kernel



When?

It’s all in kdbus git, and systemd git, now!

Compile-time switch in systemd

We hope to get kdbus reviewed and accepted into the kernel in
2014

gdbus support coming soon, also libdbus1 support

Google for git repos!

D-Bus in the Kernel



When?

It’s all in kdbus git, and systemd git, now!

Compile-time switch in systemd

We hope to get kdbus reviewed and accepted into the kernel in
2014

gdbus support coming soon, also libdbus1 support

Google for git repos!

D-Bus in the Kernel



When?

It’s all in kdbus git, and systemd git, now!

Compile-time switch in systemd

We hope to get kdbus reviewed and accepted into the kernel in
2014

gdbus support coming soon, also libdbus1 support

Google for git repos!

D-Bus in the Kernel



Outlook

Sandboxing

Yielding CPU time to destination

Priority inheritance

Priority queues

. . .

D-Bus in the Kernel



Outlook

Sandboxing

Yielding CPU time to destination

Priority inheritance

Priority queues

. . .

D-Bus in the Kernel



Outlook

Sandboxing

Yielding CPU time to destination

Priority inheritance

Priority queues

. . .

D-Bus in the Kernel



Outlook

Sandboxing

Yielding CPU time to destination

Priority inheritance

Priority queues

. . .

D-Bus in the Kernel



Outlook

Sandboxing

Yielding CPU time to destination

Priority inheritance

Priority queues

. . .

D-Bus in the Kernel



That’s all, folks!

D-Bus in the Kernel


