Overview an Installation o Sage

Basic usaç

Interactive shell and scripting

Arithmetic and built-in functions

Applications i

domains

Number Theor

Graph plotting

Matrix algebra

Sage and LTE

application and further

Contributing

An Introduction to Sage

Arvind S Raj

Department of Cybersecurity Systems and Networks Amrita University, India

1 February 2014 / FOSDEM

Overview an Installation of Sage

Basic usage
Interactive shell an scripting
Arithmetic and built-in functions

Applications i various domains

Number Theor Calculus Graph plotting Matrix algebra

More applications and further

- Graduate CS student at Amrita University, India.
- Passionate about computer security and Python.
- Use Sage in Cryptography labs, Mathematics courses and CTF contests.

Overview and Installation of Sage

Interactive shell an scripting

Applications i

domains

Number The

Graph plottin

Sage and LaTe

application

Contributing

Convince you that Sage is cool and should be used in math courses.

Overview and Installation of Sage

Basic usage
Interactive shell ar
scripting
Arithmetic and
built-in functions

Applications i various domains

Number Theory
Calculus
Graph plotting
Matrix algebra

More applications and further reading

- 1 Overview and Installation of Sage
 - 2 Basic usage
- 3 Applications in various domains
- 4 More applications and further reading
- **5** Contributing to Sagemath

Overview and Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and

Applications various

Algebra Number The

Graph plotting
Matrix algebra

More

applications and further reading

Contributing to Sagemath

1 Overview and Installation of Sage

- 2 Basic usage Interactive shell and scripting Arithmetic and built-in functions
- 3 Applications in various domains
 Algebra
 Number Theory
 Calculus
 Graph plotting
 Matrix algebra
- 4 More applications and further reading
- **5** Contributing to Sagemath

Overview and Installation of Sage

Basic usage Interactive shell and scripting Arithmetic and built-in functions

various domains Algebra

Calculus Graph plotting Matrix algebra Sage and LATEX

More applications and further reading

- GPL licensed mathematics software.
- Unified interface to about 90 popular Python libraries.
- Two modes: command(like Python shell) and notebook(web interface).
- Power of IPython shell and Python programming language.
- "sagerc" file: \$HOME/.sage/init.sage or \$SAGE_STARTUP_FILE.
- Installation
 - Pre-built binaries for most OS.
 - PPA for Ubuntu.
 - Packaging efforts underway for Debian and Fedora.

Overview an Installation of Sage

Basic usage

Interactive shell a scripting

Arithmetic and built-in functions

domains

Algebra

Number Theo

Graph plottin Matrix algebi

More

applications and further reading

- 1 Overview and Installation of Sage
 - 2 Basic usage Interactive shell and scripting Arithmetic and built-in functions
- 3 Applications in various domains
 Algebra
 Number Theory
 Calculus
 Graph plotting
 Matrix algebra
 Sage and MT-X
- 4 More applications and further reading
- **5** Contributing to Sagemath

Interactive shell and scripting

Arvino

Overview an Installation o Sage

Basic usage Interactive shell and scripting Arithmetic and

various

Number Theory
Calculus
Graph plotting
Matrix algebra

More application and further

- Sage interpreter: IPython shell.
- Sage scripts
 - Similar to Python scripts; .sage extension.
 - import names from sage.all
 - Run as sage <filename> <arguments> like Python.
 - Other possibilities: profiling, compiling sage files(Cython), access C functions directly.

Arithmetic and built-in functions

Arvin

Overview and Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications i various domains

Algebra Number Theor

Graph plotting
Matrix algebra
Sage and LTEX

More applications and further reading

- General arithmetic supported by an (I)Python shell.
 - ' is exponent and '' is XOR.
 - For integers, / reduces to lowest fraction and // performs integer division.
- Support mathematical functions and constants with arbitrary precision.
 - pi.n(digits=20) = 3.1415926535897932385
 - e.n(digits=25) = 2.718281828459045235360287
 - golden_ratio.n(prec=60) = 1.6180339887498948
 - $n(\sin(pi/3), prec=60) = 0.86602540378443865$
 - sqrt (263) .n (digits=20) = 16.217274740226854774
 - n(cos(5*pi/4), prec=60) = -0.70710678118654752

Overview and Installation of Sage

Basic usage Interactive shell and scripting Arithmetic and built-in functions

Applications in various domains

Algebra

Number Theo

Graph plottir Matrix algeb

. .

applications and further reading

- 1 Overview and Installation of Sage
- 2 Basic usage Interactive shell and scripting Arithmetic and built-in functions
- 3 Applications in various domains
 Algebra
 Number Theory
 Calculus
 Graph plotting
 Matrix algebra
 Sage and LAT=X
- 4 More applications and further reading
- **5** Contributing to Sagemath

Overview an Installation o Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications i various domains

aomains Algebra

Calculus
Graph plotting
Matrix algebra

More applications and further reading

Contributing to Sagemath · Factorizing polynomials.

•
$$factor(x^4 - 15x^3 + 84x^2 - 208x + 192) = (x - 3)(x - 4)^3$$

•
$$factor(x^3 - 6x^2 + 11x - 6) = (x - 1)(x - 2)(x - 3)$$

- · Solving polynomial equations.
 - $solve([x^2 4x + 2 == -1], x) = [x = 3, x = 1]$
 - Solutions to $x^2 + 3xy + y^2 = 0$ and x y = 4 = [[1.1055728, -2.8944272], [2.8944272, -1.1055728]]
- Use find_root where solve does not work. Also useful to find solutions in a particular interval.
 - solve(cos(t) == sin(t), t) = [sin(t) = cos(t)]
 - $find_root(cos(t) == sin(t), 0, pi) = 0.785398163397$

Overview and Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications various domains ^{Algebra} Number Theory

Calculus Graph plotting

Sage and LTEX

applications and further reading

- Modulus: mod(27, 12) = 3 and power_mod(27, 2, 12) =
- Primality test: *is_prime*(13) = True, *is_prime*(15) = False
- prime_range(1,35) = [2,3,5,7,11,13,17,19,23,29,31].
 - Generator version: primes(1,35)
- primes_first_n(11) = [2,3,5,7,11,13,17,19,23,29,31]
- next_prime(29) = 31 and previous_prime = 23
- factorial(20) = 2432902008176640000, factor(20) = 2² · 5, divisors(20) = [1, 2, 4, 5, 10, 20]
- gcd(10, 15) = 5, lcm(10, 15) = 30

Overview an Installation of Sage

Basic usage
Interactive shell an scripting
Arithmetic and

Application various

Algebra
Number Theo

Number Theo
Calculus

Graph plotting
Matrix algebra
Sage and LTE

More applications and further reading

Contributing

Differentiation

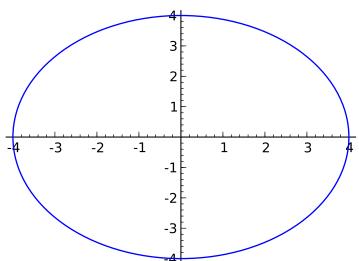
- diff(sin(x) + cos(x) = cos(x) sin(x)
- $diff((sin(x^2)^3)) = 6 x cos(x^2) sin(x^2)^2$
- Integration
 - integral(cos(x) sin(x)) = cos(x) + sin(x)
 - $integral(6 * x * cos(x^2) * sin(x^2)^2, x) = sin(x^2)^3$
- Partial differential and solving differential equations also possible!

Overview and Installation of

Basic usage
Interactive shell and scripting
Arithmetic and

Applications i various

Algebra Number The


Graph plotting
Matrix algebra

Sage and LTE

applications and further reading

Contributing

Circle of radius 4 centered at (0, 0): c = circle((0, 0), 4)

Overview and Installation of

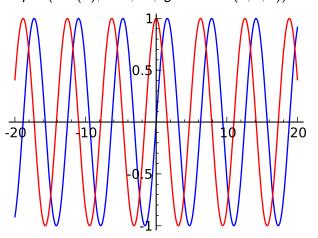
Basic usage
Interactive shell and scripting
Arithmetic and

Applications in various domains

Algebra Number The

Graph plotting

Matrix algeb


More

applications and further reading

Contributing

Multiple functions in same plot.

$$plot(sin(x), -20, 20, rgbcolor = (0, 0, 1)) + plot(cos(x), -20, 20, rgbcolor = (1, 0, 0))$$

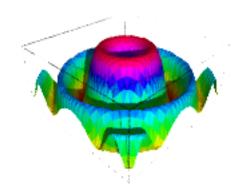
Basic usaç

Interactive shell an scripting
Arithmetic and built-in functions

Applications i various

Algebra

Number The


Graph plotting

Sage and ME

More application and further

Contributing

$f = \frac{\sin(y*y+x*x)}{\sqrt{(x*x+y*y+.0001)}} : plot3d(f, (-3,3), (-3,3))$

Overview an Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

various domains

Algebra Number Theory

Graph plotting
Matrix algebra

More applications and further

Contributing to Sagematl • Creating matrices: m = Matrix([[1, 2], [3, 4], [5, 6]])

Arithmetic operations

•
$$P = Matrix([[1,2],[3,4]]), Q = Matrix([[7,8],[5,6]])$$

•
$$P + Q = \begin{pmatrix} 8 & 10 \\ 8 & 10 \end{pmatrix}$$
, $P - Q = \begin{pmatrix} -6 & -6 \\ -2 & -2 \end{pmatrix}$

•
$$P * Q = \begin{pmatrix} 17 & 20 \\ 41 & 48 \end{pmatrix}$$
, $4 * P = \begin{pmatrix} 4 & 8 \\ 12 & 16 \end{pmatrix}$

•
$$P^3 = \begin{pmatrix} 37 & 54 \\ 81 & 118 \end{pmatrix}$$
, $P^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$, $|P| = -2$

 More functions: is_singular, is_symmetric, is skew symmetric, is invertible, is square

Overview an Installation o Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications various domains

Algebra Number Theor

Calculus
Graph plotting
Matrix algebra

Sage and LTEX

more applications and further reading

Contributing

LATEXrepresentation: latex(P)

```
\left(\begin{array}{rr}
1 & 2 \\
3 & 4
\end{array}\right)
```

- view(P): Display PDF(pdflatex)/HTML(MathJAX) depending on mode.
- SageT_EX: Call Sage commands from L^AT_EX.
 - Regular statement: \sage{pow_mod(27, 2, 12)}
 - Plots: \sageplot{plot(sin(x) + cos(x), -20, 20)}
 - \sageblock and \sagesilent: Embedding Sage code

Overview an Installation o Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications various

Algebra Number The

Graph plotting
Matrix algebra

More applications and further

reading

- 1 Overview and Installation of Sage
- 2 Basic usage Interactive shell and scripting Arithmetic and built-in functions
- 3 Applications in various domains
 Algebra
 Number Theory
 Calculus
 Graph plotting
 Matrix algebra
- 4 More applications and further reading
 - 5 Contributing to Sagemath

Overview an Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications i various domains

Algebra Number Theor

Graph plotting Matrix algebra Sage and LTEX

More applications and further reading

- Interfacing with other algebra systems(GP/PARI, Singular, Maxima)
- Polynomials
- Combinatorics
- · Graph and group theory
- Linear algebra
- Elliptic curves
- Advanced portions of everything discussed

Applications i various domains

Algebra Number Theory Calculus Graph plotting Matrix algebra

More applications and further reading

Contributing

References and further reading

- Sage tutorial: http://www.sagemath.org/doc/tutorial/index.html
- Thematic tutorials: http://www.sagemath.org/doc/thematic_tutorials/index.html
- Tutorials for those with some mathematics background: http://www.sagemath.org/doc/prep/index.html

Overview an Installation o Sage

Basic usage
Interactive shell an scripting
Arithmetic and built-in functions

various domains

Algebra Number The

Graph plottin Matrix algebr

More

applications and further reading

- 1 Overview and Installation of Sage
- 2 Basic usage Interactive shell and scripting Arithmetic and built-in functions
- 3 Applications in various domains
 Algebra
 Number Theory
 Calculus
 Graph plotting
 Matrix algebra
- 4 More applications and further reading
- 5 Contributing to Sagemath

Overview an Installation of Sage

Basic usage Interactive shell and scripting Arithmetic and built-in functions

Applications in various domains

Calculus
Graph plotting
Matrix algebra
Sage and LTEX

More applications and further reading

- · Packaging for Linux distros.
- Improve startup time.
- UI enhancements: Notebook and 2D plots.
- Mobile applications: Android, iOS.
- Mathematicians help with specific libraries.
- Visit http://www.sagemath.org/development.html for more information on getting involved.

Contributing to Sagemath

Thank you!