Trends in Open Source Security

FOSDEM 2013

Florian Weimer <fweimer@redhat.com>
Red Hat Product Security Team
2013-02-02
Overview

● Vulnerability tracking
● Tool-chain hardening
● Distribution-wide defect analysis
CVE-based vulnerability tracking

- http://cve.mitre.org/
- CVE-2013-0156
- CVE assignment alerts distributions
- Works well for public issues
 - oss-security mailing list and Kurt Seifried
- Many vendors also assign CVE identifiers
Version-based vulnerability tracking

- For each branch, note the minimum fixed version
- Very complicated, with subtle corner cases
- Tied to a version numbering scheme and branching model
Version-based tracking for CVE-2013-0156

CVE-2013-0156
(active_support/core_ext/hash/conversions.rb in Ruby on Rails before ...)

- rails 2.3.14.1 (bug #697722; high)
 [squeeze] - rails 2.3.5-1.2+squeeze4.1
- ruby-activesupport-2.3 2.3.14-5 (bug #697789)
- ruby-activesupport-3.2 3.2.6-5 (bug #697790)
- ruby-extlib 0.9.15-3 (bug #697895)
- libextlib-ruby <removed> (bug #697895)
Example packages for CVE-2013-0156

- rails 2.3.14.1 (bug #697722; high)

 [squeeze] - rails 2.3.5-1.2+squeeze4.1

- Fixed package versions
 - 2:2.3.14.2 (testing/wheezy)
 - 2.3.5-1.2+squeeze6 (stable/squeeze)

- Unfixed package versions:
 - 2.3.11-0.1 (testing/wheezy)
 - 2.3.5-1.2+squeeze1 (stable/squeeze)

- Can be used to rate the packages on a system
Vulnerability tracking with tracker bugs

- bugzilla.redhat.com entry with the CVE as an alias
 - Will be made public after disclosure
 - Extensive metadata in the “Whiteboard” field
- This tracker bug depends on product-specific bugs
- Lots of automation, relying on Bugzilla features
 - Uploads to Fedora post information in the Bzs
- Rather different from version-based tracking
Tracker bugs example: CVE-2013-0156

- https://bugzilla.redhat.com/show_bug.cgi?id=892870 has these dependencies:
 - Fedora bug: 893281
 - Fedora EPEL bug: 847202
 - Red Hat OpenShift Enterprise internal bugs
 - Tied to RHSA-2013:0153-1
 - Red Hat Subscription Asset Manager internal bugs
 - Tied to RHSA-2013:0154-1
 - Red Hat CloudForms bugs
 - Tied to RHSA-2013:0155-1
Vulnerability tracking requirements

- Ubuntu, Gentoo, OpenSuSE etc. use similar schemes
- Most upstreams provide critical information
 - Analysis in their security advisory or bug tracker
 - Links to individual patches/commits
- Otherwise, it has to be reverse engineered
 - Time-consuming, better spend on patch review/testing
- Distributions publish isolated security patches
 - Related discussions on the public oss-security list
Cross-distro information sharing opportunities

- Package names and versioning schemes differ
- Encoding of upstream versions differs
- CVE \leftrightarrow packages mapping could be shared
- Application for Common Platform Enumeration (CPE)?
Public version control repositories

Please publish your security patches in a publicly accessible version control repository as separate commits!

There is really no point in hiding this information.

(Not a trend yet—let's hope it does not turn into one.)
Toolchain hardening
Toolchain hardening

- Probabilistic countermeasures against code execution
- Make the program crash, not run code
- These bugs still need fixing!
Toolchain hardening

- Address space layout randomization
- Non-executable stack, heap
- malloc/free hardening against direct exploitation of double-free bugs
- -fstack-protector (stack canaries, if enabled)
- Compiler warnings (errors for format strings)
- operator new[] hardening
 - New feature in GCC 4.8
 - Backported to Fedora 18
Toolchain hardening: FORTIFY_SOURCE

- GCC provides access to array sizes using \texttt{__builtin_object_size}
 - In cases where this is possible
 - GNU libc passes length to wrapper functions
- GNU libc disables \texttt{\%n} in writable format strings
Unused hardening opportunities

- 32-bit
- Do not use prelink
- Randomization of program start address (PIE)
- BIND_NOW global offset table (GOT) protection
- -fwrapv (deterministic integer overflow)
- -fstack-check
Stack checking

- `alloca` argument allows arbitrary stack pointer adjustment
- `-fcheck-stack` has considerable code size impact
- Some assembly required
- Use stack boundary provided by split stacks
Subscript checking for operator []

- Affects std::vector, std::string, std::array
 - vec[i]
- C++ standard gives permission for bounds checking
- Library-only change has performance impact
- Further research needed
- Interim workaround: use vec.at(i)
Hardening and performance

- There is a trade-off
- Real-world attack data enables objective decisions
More far-reaching changes

- Improving memory safety for C/C++
 - Bounded pointers/array slices
 - Garbage collection
 - __attribute__ annotations
 - Vtable dispatch changes (for C++)
 - Ranges instead of iterators (for C++)
- Library consolidation
- FLOSS-specific secure coding guidelines
- Better APIs?
Changing the game

- A bunch of new system programming languages
 - Go, LuaJIT, Rust
 - And a few older ones: Ada, Haskell, Java, Ocaml
- Incremental conversion requires deep embedding
 - No kernel threads, no changes to signal handlers
 - Isolated language run-time states
- This is an implementation issue.
- At the moment, only Ada and LuaJIT qualify
Vulnerabilities and side effects

- CVE-2013-0243: tls-extra certificate validation
- Haskell is a real programming language now!
- The vulnerability is in imperative code.
 - But it could have been pure/side-effect-free.
- Vulnerabilities are not necessarily side effects.
Distribution-wide defect analysis
Static analysis

- Year 2012 for Red Hat Enterprise Linux 6
 - ~600 changes ("errata") in 340 source packages
- Before/after comparison for every errata
- Matches so far:
 - CVE-2012-3547 (freeradius)
 - Error handling improvements in PostgreSQL
 - Actual bug for psacct (837621), unixODBC (628909)
Fedora static analysis efforts

- mock-with-analysis
- “Firehose” exchange format
- https://fedoraproject.org/wiki/StaticAnalysis
Global analysis assistance

- Analysis of an entire distribution, not a single package
- Source code search engines
 - http://codesearch.debian.net
- Search for “YAML\load”
Global analysis assistance

- ELF symbol databases
 - https://github.com/vdanen/rq/
 - https://github.com/fweimer/symboldb/
- Simpler to set up than source code indexing
- Full power of PostgreSQL
Uses for symbol databases

- Joins and anti-joins point to potential vulnerabilities
- “billion laughs” denial of service with Expat
 - Program calls XML_ParserCreate, but not XML_SetEntityDeclHandler
- Privilege escalation via unsafe environment access
 - DSO defines PAM or NSS entry points and
 - DSO calls getenv or calls a function in a library which calls getenv (perhaps indirectly)
Improved tools for global analysis

• More detailed data than ELF symbols
 • Debugging information
 • Compiled binaries after disassembly
• Java, Python, … support
• Dynamic languages will need heuristics
Improved tools for global analysis

- Efficient search for function calls with certain arguments
 - `umask(0)`
 - `curl_easy_setopt(handle, CURLOPT_SSL_VERIFYHOST, 1L)`
 - `realpath(path, buffer)` where buffer is not NULL
- ELF symbols could locate binaries
- Disassembly could extract function arguments
Conclusion

- Let's try to fix `alloca`.
- Static analysis and code search engines are exciting.

Questions?

And: Please share your version control repository!