C11 and C++11 in FreeBSD

David Chisnall

February 3, 2013

Why?

The language is the standard (kind-of)
The new standards are better
People want to use them

We have to support them

C11 Overview

Alignment specifiers

Multithreading Support

A memory model (finally!)

Cosmetic improvements (anonymous structs and unions)
Static assertions

Unicode support

C++11 Overview

Better locale support

Atomics, threads, thread-local storage
Smart pointers

Tuples

Lots of language changes: constexpr, lambdas, r-value
references, initializer lists, variadic templates, range-based for
loops, (very limited) type inference...

The Stack

e csu, libgees, libe, libexxrt, libc++, clang[++]

e Many 'new’ features were already GNU extensions, now
standard

e Names usually changed

sys/cdefs.h

File included by all FreeBSD system headers
Provides macros abstracting GNU features
Now names macros with their C11 names in all dialects

Compilers with native support for these features don’t need
the macros

e.g. _Alignof (), _Thread_local, _Static_assert.

You can start using them now, whatever C/C++ dialect you
use.

The Compiler vs the OS

Clang supports the language features (well, a growing subset
of them)

FreeBSD needs to support the library features
Some come from libc++

Some need some libc functionality as well.

Atomic Operations

_Atomic() types in C11.
std::atomic<> in C++, implemented on top of C11 atomics

Complex memory model: acquire, release, consume,
acquire-release, sequentially-consistent, relaxed

Trivial for small types (CPU atomic operations, sometimes
with fences)

C++11 and C11 allow it for any types
Implemented as library functions

Problem: What happens with big atomics in shared memory?
(nothing sensible)

Thread-Local Storage

Already done for C, GNU __thread keyword
Harder for C++

Thread-local objects can have nontrivial constructors /
destructors.

Extra hooks needed to run them.

Non-POD TLS
How does this work?
struct A{
A() { puts("Created”); }

};

“A() { puts("Destroyed"); }

thread_local A a;

void *thr(void #*ignored) { return O;

int main(void)

{

pthread_t thread;
pthread_create (&thread,
sleep (1) ;

return 0;

0, thr,

}

0);

Making non-POD TLS Work

Needs hooks in libthr for construction / destruction
More complicated for scoped static variables.
Currently: Not supported.

Soon: 7

Quick Exit (C and C++)

Fast exit path.

Runs some cleanups, not all
Added support in libc
Working in 9.1

Exception Madness (C++)

C+-+11 allows the current exception (regardless of type) to be
encapsulated

Can then be passed to another thread, added to a queue, and
rethrown

Useful for fault isolation
Extra code in libcxxrt, provides access to current exception

Code in libc++4 uses this to box the exception and to rethrow
it in another thread.

Unicode Support

uchar.h (C) <uchar> (C++) add UTF-8/16/32 character
types

Supported by wchar functions already

Needs (thin) wrappers written

Any volunteers?

Compiler support for unicode literals still needed (not hard)

... gcc has a very strange notion of sanity with respect to
locales

Threading APls

C++11 adds some thread classes encapsulating the platform’s
threading APls

C11 adds some C threading APIs that are poorly designed
libc++ supports the C++11 threading APIs using pthreads
No one cares about the C11 ones (ask phk!)

Locale-aware POSIX2008 Functionality

newlocale() and duplocale() create locales.
uselocale() sets per-thread locale.

_1-suffixed functions take explicit locales. e.g:

int asprintf_l(char **, locale_t, const char x,

struct lconv *localeconv_1l(locale_t)

Locales

C++11 has rich locale support

POSIX 2008 also has extended locale support

libc++ uses the POSIX2008 locales (so does GNOME)
FreeBSD 9.1 supports them.

Useful for any multithreaded code doing locale-aware things.

Current Status

Most of of C++11 works.
Most of the interesting bits of C11 work
Still lots of work to dol

(And some C99 math.h functions are still missing)

