
C11 and C++11 in FreeBSD

David Chisnall

February 3, 2013

Why?

• The language is the standard (kind-of)

• The new standards are better

• People want to use them

• We have to support them

C11 Overview

• Alignment specifiers

• Multithreading Support

• A memory model (finally!)

• Cosmetic improvements (anonymous structs and unions)

• Static assertions

• Unicode support

C++11 Overview

• Better locale support

• Atomics, threads, thread-local storage

• Smart pointers

• Tuples

• Lots of language changes: constexpr, lambdas, r-value
references, initializer lists, variadic templates, range-based for
loops, (very limited) type inference...

The Stack

• csu, libgcc s, libc, libcxxrt, libc++, clang[++]

• Many ’new’ features were already GNU extensions, now
standard

• Names usually changed

sys/cdefs.h

• File included by all FreeBSD system headers

• Provides macros abstracting GNU features

• Now names macros with their C11 names in all dialects

• Compilers with native support for these features don’t need
the macros

• e.g. _Alignof(), _Thread_local, _Static_assert.

• You can start using them now, whatever C/C++ dialect you
use.

The Compiler vs the OS

• Clang supports the language features (well, a growing subset
of them)

• FreeBSD needs to support the library features

• Some come from libc++

• Some need some libc functionality as well.

Atomic Operations

• _Atomic() types in C11.

• std::atomic<> in C++, implemented on top of C11 atomics

• Complex memory model: acquire, release, consume,
acquire-release, sequentially-consistent, relaxed

• Trivial for small types (CPU atomic operations, sometimes
with fences)

• C++11 and C11 allow it for any types

• Implemented as library functions

• Problem: What happens with big atomics in shared memory?
(nothing sensible)

Thread-Local Storage

• Already done for C, GNU __thread keyword

• Harder for C++

• Thread-local objects can have nontrivial constructors /
destructors.

• Extra hooks needed to run them.

Non-POD TLS
How does this work?�
struct A{

A() { puts("Created"); }

~A() { puts("Destroyed"); }

};

thread_local A a;

void *thr(void *ignored) { return 0; }

int main(void)

{

pthread_t thread;

pthread_create (&thread , 0, thr , 0);

sleep (1);

return 0;

} 	� �

Making non-POD TLS Work

• Needs hooks in libthr for construction / destruction

• More complicated for scoped static variables.

• Currently: Not supported.

• Soon: ?

Quick Exit (C and C++)

• Fast exit path.

• Runs some cleanups, not all

• Added support in libc

• Working in 9.1

Exception Madness (C++)

• C++11 allows the current exception (regardless of type) to be
encapsulated

• Can then be passed to another thread, added to a queue, and
rethrown

• Useful for fault isolation

• Extra code in libcxxrt, provides access to current exception

• Code in libc++ uses this to box the exception and to rethrow
it in another thread.

Unicode Support

• uchar.h (C) <uchar> (C++) add UTF-8/16/32 character
types

• Supported by wchar functions already

• Needs (thin) wrappers written

• Any volunteers?

• Compiler support for unicode literals still needed (not hard)

• ... gcc has a very strange notion of sanity with respect to
locales

Threading APIs

• C++11 adds some thread classes encapsulating the platform’s
threading APIs

• C11 adds some C threading APIs that are poorly designed

• libc++ supports the C++11 threading APIs using pthreads

• No one cares about the C11 ones (ask phk!)

Locale-aware POSIX2008 Functionality

• newlocale() and duplocale() create locales.

• uselocale() sets per-thread locale.

• _l-suffixed functions take explicit locales. e.g:

• int asprintf_l(char **, locale_t, const char *, ...)

• struct lconv *localeconv_l(locale_t)

Locales

• C++11 has rich locale support

• POSIX 2008 also has extended locale support

• libc++ uses the POSIX2008 locales (so does GNOME)

• FreeBSD 9.1 supports them.

• Useful for any multithreaded code doing locale-aware things.

Current Status

• Most of of C++11 works.

• Most of the interesting bits of C11 work

• Still lots of work to do!

• (And some C99 math.h functions are still missing)

