Keccak,
More Than Just SHA3SUM

Guido BERTONI' Joan DAEMEN!?
Michaél PEETERS? Gilles VAN AsScCHE!

1STMicroelectronics

2NXP Semiconductors

FOSDEM 2013, Brussels, February 2-3, 2013

Outline

=

How it all began

=

Introducing KECCAK

=

More than just SHA3SUM

" Inside KECCAK

|

Keccak and the community

2/36

Outline

How it all began

3/36

Let’s talk about hash functions...

N

o

These are “hashes” of some sort, but they ain’t hash functions...

4/36

Cryptographic hash functions

h : {o,1}* = {o,1}"

Input message —» r —p Digest

B MDS5: n = 128 (Ron Rivest, 1992)
m SHA-1: n = 160 (NSA, NIST, 1995)
B SHA-2: n € {224,256, 384, 512} (NSA, NIST, 2001)

5/36

Why should you care?

® You probably use them several times a day:

m website authentication,
digital signature,

home banking,

secure internet connections,
software integrity,

version control software,

Breaking news in crypto

m 2004: SHA-0 broken (Jouxet al.)
B 2004: MD5 broken (wang et al.)
B 2005: practical attack on MD5

(Lenstra et al., and Klima)

2005: SHA-1 theoretically broken
(Wang et al.)

2006: SHA-1 broken further

(De Canniére and Rechberger)

2007: NIST calls for SHA-3

Who answered NIST’s call?

7/36

KeccAK Team to the rescue!

8/36

The battlefield

16/06/2009
v

2005 2006 2007 2008 I 2009 2010 2011 2012
[9 g _I HaBa__

[courtesy of Christophe De Canniére]

9/36

SHA-3 time schedule

2007: SHA-3 initial call

2008: submission deadline
2009: first SHA-3 conference
2010: second SHA-3 conference

2010: finalists are Blake, Grostl, JH,
Keccak and Skein

m 2012: final SHA-3 conference
m Oct. 2, 2012: KECCAK wins!

Participants: 64 — 51 — 14 -5 —1

10/36

Outline

Introducing KECCAK

11/36

KECCAK, a sponge function

Var.-length input

Variable-length output

A A

1
1y (v v M) : M)
i as P e I
0 f fl.. fli f f
> > —> > >
AN o Y

absorbing : squeezing

m Arbitrary input and output length
m More flexible than regular hash functions
m Parameters
m r bits of rate (defines the speed)
m c bits of capacity (defines the security level)

m Use the permutation KECCAK-f

4

3

12/36

The seven permutation army

B 7 permutations:

m 25, 50, 100, 200, 400, 800, 1600 bits
m toy, lightweight, fastest

m repetition of a simple round function
B operateson a 3D state

m like a block cipher but without a key

m (5x5) lanes
B up to 64-bit each

13/36

Introducing KECCAK The sponge construction

The seven permutation army

m (5x5) lanes
B up to 64-bit each

m First, choose your permutation ...

m e.g. width = 1600

m ..then choose the rate and capacity
m such that rate + capacity = 1600

m Security-speed trade-offs using the same
permutation:

Rate | Capacity | Strength | Speed
1344 256 128 xX1.312
1216 384 192 x1.188
1088 512 256 %x1.063
1024 576 288 1.000

13/36

Outline

More than just SHA3SUM

14/36

One primitive to rule them all

m Full range of cryptographic functions
m hashing (regular, salted)
m key derivation
B message authentication
B encryption
m authenticated encryption

B ..in a simple way
m simple & straightforward usage
m easy to understand security claim
m ..and increasing diversity of standard
portfolio

m very different from SHA-1 and SHA-2
m very different from AES and block
cipher modes

15/36

More than just SHA3SUM One primitive to rule them all

Use KeccAk for regular hashing

Hash

m Electronic signatures, message integrity (GPG, X.509 ...)

m Data integrity (shaxsum ...)

m Data identifier (Git, Mercurial, online anti-virus, peer-2-peer ...)

Padded message
A
I aYNaY v O
O 1O o> &> >
0 f f fl .. f
> > > —> >
I NG .

16/36

Use KeccAk for salted hashing

Salt Padded message Hash
A
] 4 M) 4 M) 4 Y)
as s o P T i
o~ : e :
I N O

m Goal: defeat rainbow tables

m Web cookie
m Password storage and verification (Kerberos, /etc/shadow ...)

Use KeccAk for salted hashing

Salt | message | 0'000-000000 Hash
A
] Y M) v) v v ~
O 1O 1O & s
0 f f fl .. f f
> » > .
L —/ _/ _/

m Goal: defeat rainbow tables

m Web cookie

m Password storage and verification (Kerberos, /etc/shadow ...)
m ..Can be as slow as you like it!

More than just SHA3SUM One primitive to rule them all

Use KECCAK as a mask generation function

Var-length input Variable-length output
A A A
A A ING
ol |f|IT|F COLfL | F [f .. | f
> > —> > > -
I AN - U

m Key derivation function in SSL, TLS
m Full-domain hashing in public key cryptography
m electronic signatures RSA PSS [PKCS#1]

m encryption RSA OAEP [PKCS#1]
m key establishment RSA KEM [IEEE Std 1363a]

18/36

More than just SHA3SUM One primitive to rule them all

Use Keccak for MACing

Key Padded message MAC
A
Cly (Y Yy () ¥ vy ()
O O O S >
0 f f fl . f f
- > > — >
I AN O O

m As a message authentication code
m Simpler than HMAC [FIps 198]
m HMAC: special construction for MACing with SHA-1 and SHA-2

m Required to plug a security hole in SHA-1 and SHA-2
m No longer needed for Keccak which is sound

More than just SHA3SUM One primitive to rule them all

Use KeccAK for (stream) encryption

Key | IV
v O M
D> > >
o P FIT If
My
Key stream

m As a stream cipher

20/36

More than just SHA3SUM One primitive to rule them all

Single pass authenticated encryption

Key | IV Padded message MAC
A
Y (M) Y (M) 4 4 (M)
&> O O O >
o IfLL L I L |f
Yy O
Key stream

m Authentication and encryption in a single pass!
m Secure messaging (SSL/TLS, SSH, IPSEC ...)

m Same primitive KECCAK-f but in a (slightly) different mode
m Duplex construction

m Also for random generation with reseeding (/dev/urandom ...)

21/36

SE2i
Tuning KECCAK to your own security requirements

Online tool available at http://keccak.noekeon.org/tune.html

Tune KECCAK to your requirements

The capacity parameter and chosen output length in Keccak can be freely chosen. Their combination
determines the attainable security and the capacity has an impact on performance. This page gives you
the optimal capacity and output length values, given the classical hash function kriteria.

Required collision resistance: 2° x= [Enter a value [4]

Required (second) preimage resistance: 2¥ y= [Enter a value E

Please specify your requirements...

22/36

http://keccak.noekeon.org/tune.html

SE2i
Tuning KECCAK to your own security requirements

Online tool available at http://keccak.noekeon.org/tune.html

Tune KECCAK to your requirements

The capacity parameter and chosen output length in Keccak can be freely chosen. Their combination
determines the attainable security and the capacity has an impact on performance. This page gives you

the optimal capacity and output length values, given the classical hash function criteria. [
Required collision resistance: 2* x= (128 @
Required (second) preimage resistance: 2¥ y= 128 @

The optimal choice of parameters is:

KECCAK[r=1344,c=256] with a least 256 bits of output.

Speed

For long messages, this function is 31.3% faster than Keccak[] (Keccak with the default parameters). On
the reference processor proposed by NIST, long messages should take about 9.6 cycles /byte.

22/36

http://keccak.noekeon.org/tune.html

SE2i
Tuning KECCAK to your own security requirements

Online tool available at http://keccak.noekeon.org/tune.html

Tune KECCAK to your requirements

The capacity parameter and chosen output length in Keccak can be freely chosen. Their combination
determines the attainable security and the capacity has an impact on performance. This page gives you
the optimal capacity and output length values, given the classical hash function criteria.

Required collision resistance: 2* x= (128

Required (second) preimage resistance: 2¥ y= [256

The optimal choice of parameters is:

KECCAK[r=1088,c=512] with a least 256 bits of output.

Speed

For long messages, this function is 6.25% faster than Keccak[] (KEccak with the default parameters). On
the reference processor proposed by NIST, long messages should take about 11.9 cycles/byte.

22/36

http://keccak.noekeon.org/tune.html

SE2i
Tuning KECCAK to your own security requirements

Online tool available at http://keccak.noekeon.org/tune.html

Security claim

In line with our hermetic sponge strategy, we make a flat sponge claim with €=256 bits of capacity: for

any output length, we claim this KECCAK sponge function resists any attack up to 2128 operations (each of
complexity equivalent to one call to Keccak-f), unless easier on a random oracle. For 256 bits of output
specifically, this translates into the following claimed security level:

Claimed security level
Collision resistance 2123

(Second) preimage resistance 2'2

Addendum: how big is 2128?

If an attacker has access to one billion computers, each performing one billion evaluations of KEccak-f per
second, it would take about 1.1x10'? years (770 times the estimated age of the universe) to evaluate

the permutation 212 times.

22/36

http://keccak.noekeon.org/tune.html

SE2i
Tuning KECCAK to your own security requirements

Online tool available at http://keccak.noekeon.org/tune.html

Security claim

In line with our hermetic sponge strategy, we make a flat sponge claim with €=512 bits of capacity: for

any output length, we claim this KECCAK sponge function resists any attack u&to 2256 operations (each of
complexity equivalent to one call to Keccak-f), unless easier on a random oracle. For 256 bits of output
specifically, this translates into the following claimed security level:

Claimed security level

Collision resistance 21 28

(Second) preimage resistance 22%°

Addendum: how big is 22552

If an attacker has access to one billion computers, each performing one billion evaluations of KEccak-f per
second, it would take about 3.7x10°! years (2.6)-tll.lib41 times the estimated age of the universe) to

evaluate the permutation 225 times.

Considering an irreversible computer working at 2.735°K (the average temperature of the universe),
Landauer's principle implies that it cannot consume less than 2.62x 102 joule every time a bit is changed.
(Computers actually consume much more than that.) Just counting from 1 to 2%% would take at least
3x10°? joules (the total energy output of the Sun during 2.5x10°° years).

22/36

http://keccak.noekeon.org/tune.html

Outline

Inside KECCAK

23/36

Keccak-f in pseudo-code

Keccak-F[b](A) {
forall i in 0..n.-1
A = Round[b] (A, RC[i])

return A
}
Round[b] (A,RC) {
6 step
C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0.4
D[x] = C[x-1] xor rot(C[x+1],1), forall x in 0.4
Alx,y]l = A[x,y]l xor D[x], forall (x,y) in (0.4,0.4)
p and m steps
Bly,2*x+3*y] = rot(A[x,yl, rix,yl), forall (x,y) in (0.4,0.4)
X Step
Alx,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0.4,0.4)
L step

A[0,0] = A[0,0] xor RC

return A

http://keccak.noekeon.org/specs_summary.html

http://keccak.noekeon.org/specs_summary.html

Performance in software

m Faster than SHA-2 on all modern PC

B KECCAKTREE faster than MD5 on some

platforms
C/b | Algo Strength
4.79 | keccakc256treed2 128
4.98 | md5 broken! 64
5.89 | keccakc512treed2 256
6.09 | shal broken! 80
8.25 | keccakc256 128
10.02 | keccakc512 256
13.73 | sha512 256
21.66 | sha256 128

[eBASH, hydra-6, http://bench.cr.yp.to/]

25/36

http://bench.cr.yp.to/

Efficient and flexible in hardware

From Kris Gaj’s presentation at SHA-3, Washington 2012:

ASIC Stratix lll FPGA
9 . 9 3
~fr— BLAKE ~fr- BLAKE
8 if,_'.“es" g Keccak ¥ 1?,_’."“"
- Kecoak P~ Kecoak
= e = Skein | 5 s —- Skein |
I3 wKeccak (O-sHaz | a O-staz |
[=214] [=215]
3 3
"J_E 5- "J_E 5t
] k]
N4 B4 @Groestl
]]
E 3 @Groestl E 3 b
o l=]
Z o ‘JH Z a2
SHA2 ' + BSkein

14 'ELAK?kem 1 @SHA2 BLAKE

a i . i 0 i . i

o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

MNormalized Area Normalized Area

26/36

Inside KECCAK Implementation tricks

Bit interleaving

m Ex.: map 64-bit lane to 32-bit words
m p seems the critical step
m Even bits in one word
Odd bits in a second word
] ROT54 — 2 X ROT32

m Can be generalized

m to 16- and 8-bit words

m Can be combined

m with lane/slice-wise architectures
m with most other techniques

®m No mismatch CPU words vs. security
level

[KEccAk impl. overview, Section 2.1]

27/36

Outline

Keccak and the community

28/36

S5, I Gl IS
SHA-3, an open contest

m Open submissions, as required by NIST:

m Public algorithm details
m Open-source reference and optimized implementations
m No patents

m Open cryptanalysis
m Open benchmarks [eBASH] [XBX]

KECcCAKTOOLS

A set of documented C++ classes to help analyze KEccAk-f
m To encourage cryptanalysis (we use it too!)
m To help verify our claims [Keccax Team, FSE 2012]
m And also to generate optimized code

Prizes for best cryptanalysis results

KECCAK
cryptanalysis

prize

Four cryptanalysis prizes awarded!

m 25 bottles of Belgian trappist beer

[CICO problem & cube testers, Aumasson and
Khovratovich]

Bialetti coffee machine
[zero-sum, Aumasson and Meier]
Lambic-based beers and book

[zero-sum, Boura and Canteaut]

Belgian finest chocolates
[second preimage, Bernstein]

30/36

Crunchy Crypto Collision and Preimage Contest

m Goal:

m Motivate 3rd-party cryptanalysis

m Give an instant view on current state-of-the-art
m Scope: 1to 12 rounds, including smaller instances

m KECCAK[r = 40, ¢ = 160], < no challenge broken yet!
m KECCAK[r = 240, ¢ = 160],

m KECCAK[r = 640, c = 160], and

m KECCAK[r = 1440, ¢ = 160]

m Results so far:

m Preimages found for 1-2 rounds
m Collisions found for 1-4 rounds

http://keccak.noekeon.org/crunchy_contest.html

31/36

http://keccak.noekeon.org/crunchy_contest.html

Hex-Hot-Ticks

m Contest for stimulating developers in
using "exotic” platforms
m Winners:
m KeccAak on a NVIDIA GPU using
CUDA [Gerhard Hoffmann]
m KECCAKTREE on a NVIDIA GPU also
using CUDA [Guillaume Sevestre]

32/36

Implementations

m Reference implementations
m Focused on readability
® In C, C++ and Python
m Optimized implementations
m For 8-bit, 32-bit (bit interleaving), 64-bit platforms + 128-bit SIMD
In C or in assembly (x86, ARM, AVR)

u
® In-place for reduced memory footprint
B KECCAKTOOLS to generate optimized code

Available at http://keccak.noekeon.org/files.html

33/36

http://keccak.noekeon.org/files.html

Do you want to help?

m You can

m make static / dynamic libraries,

m optimize current implementations,

B write a new implementation in your favorite language.
m Implementation-oriented doc. [Keccak implementation overview]
m Please respect the SPONGE / DUPLEX interfaces

m APl guideline to be published soon

m SHA-3 not standardized yet!

Construction
Primitive

34/36

Questions

Questions?

More information on
http://sponge.noekeon.org/
http://keccak.noekeon.org/

35/36

http://sponge.noekeon.org/
http://keccak.noekeon.org/

Credits

m Creative Commons Attribution

m http://en.wikipedia.org/wiki/File:
Japanese_Secret_Puzzle_Box.jpg, from Nipaylah.
m Creative Commons Attribution-Share Alike
m http://en.wikipedia.org/wiki/File:Cannabis_leaf_2.svg, from
Christopher Thomas.
m http://commons.wikimedia.org/wiki/File:
Powder_Funnel.jpg, from Krakuspm.
m http:
//www flickr.com/photos/pfvunderground/6914321238/
from Underground PFV Uitgeverij (via http://photopin.com).
m Creative Commons Attribution-NonCommercial-NoDerivs
m http://www flickr.com/photos/stevie_gill/3950697539/, from
stevie.gill (via http://photopin.com).
m http://www.flickr.com/photos/marcelgermain/2078076913/,
from MarcelGermain (via http://photopin.com).

m SHA-3 battlefield picture courtesy of Christophe De Canniére

36/36

http://en.wikipedia.org/wiki/File:Japanese_Secret_Puzzle_Box.jpg
http://en.wikipedia.org/wiki/File:Japanese_Secret_Puzzle_Box.jpg
http://en.wikipedia.org/wiki/File:Cannabis_leaf_2.svg
http://commons.wikimedia.org/wiki/File:Powder_Funnel.jpg
http://commons.wikimedia.org/wiki/File:Powder_Funnel.jpg
http://www.flickr.com/photos/pfvunderground/6914321238/
http://www.flickr.com/photos/pfvunderground/6914321238/
http://photopin.com
http://www.flickr.com/photos/stevie_gill/3950697539/
http://photopin.com
http://www.flickr.com/photos/marcelgermain/2078076913/
http://photopin.com

	How it all began
	Introducing Keccak
	The sponge construction

	More than just SHA3SUM
	One primitive to rule them all
	Security

	Inside Keccak
	Implementation tricks

	Keccak and the community
	SHA-3, an open contest
	Cryptanalysis prizes
	Implementations

	Questions

