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Outline of the talk

• Graph partitioning

• The Scotch project and history

• Licensing issues

• Some lessons (to be) learnt



Graph partitioning



What are graphs

• A graph is a set of vertices, linked by edges

• Graphs are a versatile tool for representing problems :
● Minimization of delivery trips

– E.g. « Traveling Salesman Problem »
– Search for « Hamiltonian paths »

● Determination of maximum flow in a network
– Search for « max flow / min cut »



Graph partitioning (1)

• Graph partitioning is an ubiquitous technique which has 
proven useful in a wide number of application fields

● Used to model domain-dependent optimization 
problems

● “Good solutions” take the form of partitions which 
minimize vertex or edge cuts, while balancing the 
weight of graph parts

• NP-hard problem in the general case

• Many algorithms have been proposed in the literature :
● Graph algorithms, evolutionary algorithms, spectral 

methods, linear optimization methods, …



Graph partitioning (2)

• Two main problems for our team, in relation 
to sparse linear system solving (Ax = b) :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative 

methods

• These problems can be modeled as graph 
partitioning problems on the adjacency graph 
of symmetric positive-definite matrices
• Edge separator problem for domain 

decomposition
• Vertex separator problem for sparse 

matrix ordering by nested dissection



Nested dissection

• Top-down strategy for removing potential fill-inducing paths

• Principle [George, 1973]
● Find a vertex separator of the graph
● Order separator vertices with available indices of 

highest rank
● Recursively apply the algorithm on the separated 

subgraphs
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The Scotch project and history



The Scotch project (1)

• Provide a set of fast heuristic algorithms and tools for 
vertex and edge graph partitioning and for static mapping

• Static mapping is a generalization of the graph partitioning 
problem in which vertices of a source graph S have to be 
mapped onto vertices of a target graph T

S

T

• Communication cost 
function accounts for 
distance



The Scotch project (2)

• Previous roadmap : should handle graphs of more than 
a billion vertices distributed across one thousand 
processors

• Current roadmap : should handle graphs of a trillion 
vertices distributed across one million processors

• Account for heavily non uniform parallel 
architectures

• Asynchronous algorithms

DONE !



The Scotch history (1)

• Dec. 1992 : Start coding of v0.0
• Algorithms for static mapping

• May 1994 : First published conference paper
• Jul. 1995 : Start coding of V3.0

• First version planned to be publicly released
– Competing non-free software 

MeTiS was available from the web
• Aug. 1996 : Start coding of v3.2

• Algorithms for sparse matrix ordering
• Sep. 1996 : First website for public 

release of v3.0 under binary form
• Sep. 1999 : First license form for source 

code 



The Scotch history (2)

• Nov. 2001 : Start coding of v4.0

• Oct. 2004 : Start coding of v5.0
• Parallel versions of sparse matrix ordering code

• Feb. 2006 : Release of v4.0 as free software under LGPL

• Project hosted by Inria Gforge
• Aug. 2007 : Release of v5.0 as free software under 

CeCILL-C

• PT-Scotch parallel offspring
• Sep. 2008 : Start coding of v6.0
• Dec. 2008 : Start coding of v6.1
• Dec. 2012 : Release of v6.0

• 20 years after coding of v0.0 started



(Free) software in science



Place of software in research

• In the world of research, one can see software :
• As an end :

– Demonstrator of algorithmic feasibility
– Mathematical proof of existence

• As a mean :
– Self-crafted tool
– Necessary to the obtainment of some results

• It is usually both at the same time
• Scientific reproducibility imposes that software be available 

along with papers that exhibit its results

• A policy regarding technical and legal means for 
accessing such software must be set up



What to do with produced software ? (1)

• A research laboratory is not supposed to be a software 
editor
• A software may become useless from a research point 

of view but still be highly valuable from an application 
point of view

• The value placed into the former development of such 
software must not be lost

– Unused software is wasted money
• Leadership on software development and maintenance 

may evolve
– This has to be anticipated and encouraged
– Free software licenses are most often a very 

suitable tool for this purpose



What to do with produced software ? (2)

• Application maintenance is not part of the tasks of a 
scientist
• Yet, it is necessary to build and maintain a user 

community
• Its cost/benefit ratio has to be carefully evaluated



What to do with produced software ? (3)

• The cost of turning research software into production-
grade products can be high

• Yet, this step is necessary so as not to lose software 
value

• Several complementary means can be envisioned :
• Technology transfer contracts with industry

– But community is likely to lose further 
developments if the industrial version becomes 
privative/proprietary 

• Allocation of dedicated means by the research 
institution

– Software engineers, not PhD's or post-doc's !
– Beware of interns !  ;-)



License issues



Ownership of author's rights (1)

• Software is covered by author's rights, like many other 
works of the mind
• Yet, standard author's rights do not apply

• Software authors who are civil servants or company 
employees see their patrimonial author's rights 
automatically transferred to their employer

• Only the employer can decide about :
• Whether the software can be made publicly available or 

not
• Under what license(s) it can be made available



Ownership of author's rights (2)

• Necessity to track contributions
• Whenever handling licensing issues, author's rights 

must be asserted
– Better to do it beforehand

• Beware of interns !
• The author's rights of unpaid interns are not 

automatically transferred to the employer !
• Problem of searching for the members of the 

“Disappeared Intern's Society”...
– Some projects had to hire employees to re-code 

many critical modules



Choosing the proper license

• Select a license that is suitable to your project and acceptable 
by your community

• As a civil servant, my results have to be used by the 
majority of the taxpayers and citizens

– Weak copyleft licenses are interesting in this respect
• Advocate the fact of releasing your code to your employer

• This process can be long, all the more when several 
institutions participated in the funding

– In the case of Scotch : CNRS, ENSEIRB, Inria, 
Université Bordeaux 1

• Find relevant arguments :
– “My software is crap and nobody will use it anyway”
– There already exist competitors using these licenses
– ...



Benefits of going free software

• Inclusion of software on the form of packages within the 
main free software distributions
• Increased visibility : Linux (Debian, Ubuntu), FreeBSD, 

…
• Packaging done by autonomous mainteners (Debian 

Science, ...)
• Exclusive use within academic and/or industrial free 

software
• E.g. OpenFOAM

• No contribution to the software itself
• Expertise is scarce, mostly owned by competitors

– Build a testbed environment that they can join !



Choosing the proper license (2)

• Within a given class, choose the license according to its own 
merits and to environmental constraints

• In the case of Scotch, for weak copyleft licenses :

• LGPL allows “legal leaking” towards GPL

• Inria is my employer

• So... CeCILL-C
• Define a licensing policy from the inception of your project

• Using a free software license reduces the impact of 
external contributors as long as the software is kept within 
the same license perimeter



Some lessons (to be) learnt



• Strict rules have to be defined and enforced since the 
inception of the project regarding :

• Architectural conventions
– The structure of the software should be clearly 

exposed 

• Naming conventions
– Names should reflect architecture and function
– A given variable or routine function should result in 

a single canonical name

• Coding standards
– For reader's and writer's sake

• Always aim at durability and extensibility !

Be paranoid about quality (1)



Structure of the Scotch package (1)
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Structure of the Scotch package (2)
• All data structures are defined by a C type (aka “class”)

• Graph type in graph.h, etc...

• Routines are grouped by type name and function (methods)

• arch_* : target architectures

• bgraph_* : sequential graph bipartitioning

• bdgraph_* : parallel graph bipartitioning

• dgraph_* : parallel graph handling

• kdgraph_* : parallel k-way static mapping

• vdgraph_* : parallel vertex separation

• vgraph_* : sequential vertex separation

• …



Structure of the Scotch package (3)

• Method files are identified by their type of computation :

• b?graph_bipart_xy : edge graph bipartitioning 
method

• k?graph_map_xy : static mapping method

• h?graph_order_xy : graph ordering method

• v?graph_separate_xy : vertex graph separation 
method

• hmesh_order_xy : node mesh ordering method

• vmesh_separate_xy : node mesh separation 
method

• ...

•



• Every data structure should have an axiom checker 
routine attached to it

• Written before the data structure is used !

• Called at the end of every routine that modifies a 
data structure of its kind

• When used at the beginning of the library API routines, 
they help debug user's software

• Eternal worshiping easily earned...  ;-)

Be paranoid about quality (2)



Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/
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