
How to mature a 20 y.o. Scotch

François Pellegrini

EQUIPE PROJET
BACCHUS
Bordeaux

Sud-Ouest 02/02/2012

Outline of the talk

• Graph partitioning

• The Scotch project and history

• Licensing issues

• Some lessons (to be) learnt

Graph partitioning

What are graphs

• A graph is a set of vertices, linked by edges

• Graphs are a versatile tool for representing problems :
● Minimization of delivery trips

– E.g. « Traveling Salesman Problem »
– Search for « Hamiltonian paths »

● Determination of maximum flow in a network
– Search for « max flow / min cut »

Graph partitioning (1)

• Graph partitioning is an ubiquitous technique which has
proven useful in a wide number of application fields

● Used to model domain-dependent optimization
problems

● “Good solutions” take the form of partitions which
minimize vertex or edge cuts, while balancing the
weight of graph parts

• NP-hard problem in the general case

• Many algorithms have been proposed in the literature :
● Graph algorithms, evolutionary algorithms, spectral

methods, linear optimization methods, …

Graph partitioning (2)

• Two main problems for our team, in relation
to sparse linear system solving (Ax = b) :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative

methods

• These problems can be modeled as graph
partitioning problems on the adjacency graph
of symmetric positive-definite matrices
• Edge separator problem for domain

decomposition
• Vertex separator problem for sparse

matrix ordering by nested dissection

Nested dissection

• Top-down strategy for removing potential fill-inducing paths

• Principle [George, 1973]
● Find a vertex separator of the graph
● Order separator vertices with available indices of

highest rank
● Recursively apply the algorithm on the separated

subgraphs

A

S
B

A S B

The Scotch project and history

The Scotch project (1)

• Provide a set of fast heuristic algorithms and tools for
vertex and edge graph partitioning and for static mapping

• Static mapping is a generalization of the graph partitioning
problem in which vertices of a source graph S have to be
mapped onto vertices of a target graph T

S

T

• Communication cost
function accounts for
distance

The Scotch project (2)

• Previous roadmap : should handle graphs of more than
a billion vertices distributed across one thousand
processors

• Current roadmap : should handle graphs of a trillion
vertices distributed across one million processors

• Account for heavily non uniform parallel
architectures

• Asynchronous algorithms

DONE !

The Scotch history (1)

• Dec. 1992 : Start coding of v0.0
• Algorithms for static mapping

• May 1994 : First published conference paper
• Jul. 1995 : Start coding of V3.0

• First version planned to be publicly released
– Competing non-free software

MeTiS was available from the web
• Aug. 1996 : Start coding of v3.2

• Algorithms for sparse matrix ordering
• Sep. 1996 : First website for public

release of v3.0 under binary form
• Sep. 1999 : First license form for source

code

The Scotch history (2)

• Nov. 2001 : Start coding of v4.0

• Oct. 2004 : Start coding of v5.0
• Parallel versions of sparse matrix ordering code

• Feb. 2006 : Release of v4.0 as free software under LGPL

• Project hosted by Inria Gforge
• Aug. 2007 : Release of v5.0 as free software under

CeCILL-C

• PT-Scotch parallel offspring
• Sep. 2008 : Start coding of v6.0
• Dec. 2008 : Start coding of v6.1
• Dec. 2012 : Release of v6.0

• 20 years after coding of v0.0 started

(Free) software in science

Place of software in research

• In the world of research, one can see software :
• As an end :

– Demonstrator of algorithmic feasibility
– Mathematical proof of existence

• As a mean :
– Self-crafted tool
– Necessary to the obtainment of some results

• It is usually both at the same time
• Scientific reproducibility imposes that software be available

along with papers that exhibit its results

• A policy regarding technical and legal means for
accessing such software must be set up

What to do with produced software ? (1)

• A research laboratory is not supposed to be a software
editor
• A software may become useless from a research point

of view but still be highly valuable from an application
point of view

• The value placed into the former development of such
software must not be lost

– Unused software is wasted money
• Leadership on software development and maintenance

may evolve
– This has to be anticipated and encouraged
– Free software licenses are most often a very

suitable tool for this purpose

What to do with produced software ? (2)

• Application maintenance is not part of the tasks of a
scientist
• Yet, it is necessary to build and maintain a user

community
• Its cost/benefit ratio has to be carefully evaluated

What to do with produced software ? (3)

• The cost of turning research software into production-
grade products can be high

• Yet, this step is necessary so as not to lose software
value

• Several complementary means can be envisioned :
• Technology transfer contracts with industry

– But community is likely to lose further
developments if the industrial version becomes
privative/proprietary

• Allocation of dedicated means by the research
institution

– Software engineers, not PhD's or post-doc's !
– Beware of interns ! ;-)

License issues

Ownership of author's rights (1)

• Software is covered by author's rights, like many other
works of the mind
• Yet, standard author's rights do not apply

• Software authors who are civil servants or company
employees see their patrimonial author's rights
automatically transferred to their employer

• Only the employer can decide about :
• Whether the software can be made publicly available or

not
• Under what license(s) it can be made available

Ownership of author's rights (2)

• Necessity to track contributions
• Whenever handling licensing issues, author's rights

must be asserted
– Better to do it beforehand

• Beware of interns !
• The author's rights of unpaid interns are not

automatically transferred to the employer !
• Problem of searching for the members of the

“Disappeared Intern's Society”...
– Some projects had to hire employees to re-code

many critical modules

Choosing the proper license

• Select a license that is suitable to your project and acceptable
by your community

• As a civil servant, my results have to be used by the
majority of the taxpayers and citizens

– Weak copyleft licenses are interesting in this respect
• Advocate the fact of releasing your code to your employer

• This process can be long, all the more when several
institutions participated in the funding

– In the case of Scotch : CNRS, ENSEIRB, Inria,
Université Bordeaux 1

• Find relevant arguments :
– “My software is crap and nobody will use it anyway”
– There already exist competitors using these licenses
– ...

Benefits of going free software

• Inclusion of software on the form of packages within the
main free software distributions
• Increased visibility : Linux (Debian, Ubuntu), FreeBSD,

…
• Packaging done by autonomous mainteners (Debian

Science, ...)
• Exclusive use within academic and/or industrial free

software
• E.g. OpenFOAM

• No contribution to the software itself
• Expertise is scarce, mostly owned by competitors

– Build a testbed environment that they can join !

Choosing the proper license (2)

• Within a given class, choose the license according to its own
merits and to environmental constraints

• In the case of Scotch, for weak copyleft licenses :

• LGPL allows “legal leaking” towards GPL

• Inria is my employer

• So... CeCILL-C
• Define a licensing policy from the inception of your project

• Using a free software license reduces the impact of
external contributors as long as the software is kept within
the same license perimeter

Some lessons (to be) learnt

• Strict rules have to be defined and enforced since the
inception of the project regarding :

• Architectural conventions
– The structure of the software should be clearly

exposed

• Naming conventions
– Names should reflect architecture and function
– A given variable or routine function should result in

a single canonical name

• Coding standards
– For reader's and writer's sake

• Always aim at durability and extensibility !

Be paranoid about quality (1)

Structure of the Scotch package (1)
Ordering

Vertex
separation

Static mapping

k­way
mapping

Recursive
bipartitioning

Error
handling

Pa
ra

lle
l

Se
qu

en
tia

l

Architecture

I/O

Ordering

Vertex
separation

Aprx. min.
degree/fill

Static mapping I/O

Recursive
bipartitioning

API

Binaries

API

Binaries

Coarsening Matching Folding

Coarsening Matching

Strategy MeTiS stub

Structure of the Scotch package (2)
• All data structures are defined by a C type (aka “class”)

• Graph type in graph.h, etc...

• Routines are grouped by type name and function (methods)

• arch_* : target architectures

• bgraph_* : sequential graph bipartitioning

• bdgraph_* : parallel graph bipartitioning

• dgraph_* : parallel graph handling

• kdgraph_* : parallel k-way static mapping

• vdgraph_* : parallel vertex separation

• vgraph_* : sequential vertex separation

• …

Structure of the Scotch package (3)

• Method files are identified by their type of computation :

• b?graph_bipart_xy : edge graph bipartitioning
method

• k?graph_map_xy : static mapping method

• h?graph_order_xy : graph ordering method

• v?graph_separate_xy : vertex graph separation
method

• hmesh_order_xy : node mesh ordering method

• vmesh_separate_xy : node mesh separation
method

• ...

•

• Every data structure should have an axiom checker
routine attached to it

• Written before the data structure is used !

• Called at the end of every routine that modifies a
data structure of its kind

• When used at the beginning of the library API routines,
they help debug user's software

• Eternal worshiping easily earned... ;-)

Be paranoid about quality (2)

Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

