
Scale your 
Jenkins pipeline 

FOSDEM 2013
Anders Nickelsen, PhD

QA engineer @ Tradeshift
@anickelsen, ani@tradeshift.com







Tradeshi 



Tradeshi 
Platform for your business interactions
Core services are free

~3 years old

One product – one production environment

~20 developers

Copenhagen, DK and San Francisco, CA

Feb	  2,	  2013	   FOSDEM	  2013	  





Slow test is slow 



Why scale? Fast feedback 
Integration tests (IT): Selenium 2 from Geb (Java/Groovy)
Run by Jenkins on every change


Takes 2 hours to run all in sequence



10+ team branches, each trigger IT
Verified merges to master, also trigger IT


Pipeline is congestion point

Feedback not fast enough

Feb	  2,	  2013	   FOSDEM	  2013	  



Release pipeline 

Feb	  2,	  2013	   FOSDEM	  2013	  

Master	  

10	  team	  branches	  

Integra9on	  tests	  on	  changes	  

Any	  branch	  
(unit	  tested)	  

=	  10	  projects	  

Produc9on	  



The swarm 



©	  Blizzard	  2013	  



What? 
12 Jenkins slaves
– New slaves join swarm on boot
– Orchestrated by ec2-collective
– Configured by Puppet at boot


Tests distributed in sets
Longest processing time
Uses test run-time from last stable build

1 set per online slave (dynamic)

Feb	  2,	  2013	   FOSDEM	  2013	  





Fast tests! 

All sets are put into Jenkins build queue
Picked up by any slave
–  throttled to one per slave


12 slaves => 20 minutes
– Tests: 10 min

– Overhead: 10 min

24 slaves => 15 minutes

Feb	  2,	  2013	   FOSDEM	  2013	  



Post processing 
Join when all sets complete
–  Triggered builds are blocking


Collect test results
–  JUnit, HTML, screenshots, videos, console logs = 

500 MB/run
–  Curl request to Jenkins API


Process test results
–  JVM outputs, slice console logs, archive artifacts
–  Custom groovy script

Feb	  2,	  2013	   FOSDEM	  2013	  



Optimizations 



Optimizations 

Only on ITCase file-level, file scan

Only on spec level
– min time = longest running spec


Only scale test processing time
– 10 minutes today

Feb	  2,	  2013	   FOSDEM	  2013	  



Lessons learned 



Parallelization overhead 

Swarm setup and tear down
–  node initialization and test result collection


Tests break a lot when run in parallel
Fixing tests and code hurts

Feb	  2,	  2013	   FOSDEM	  2013	  



‘Random failures’ 
Failures appear probabilistic / random
– Order dependencies
– Timing issues
– Rebuild ‘fixes’ the tests


Slave failures
– Weakest link breaks the pipeline
– 24 slaves => 1 filled up due to slow mount => 

pipeline broken



Feb	  2,	  2013	   FOSDEM	  2013	  





Cost optimization 

AWS EC2 instances:
– 1/2 price gave 3/4 performance
– 4/3 swarm size gave 1/4 price reduction

– Equivalent performance


Swarm is offline when not used
– Kept online for 1 hour after use

Feb	  2,	  2013	   FOSDEM	  2013	  





Credits 
puppetlabs.com
github.com/andersdyekjaerhansen/ec2_collective

Jenkins and plugins

–  Swarm plugin, parameterized trigger, envinject, rebuild, join, 
throttle concurrent build, conditional build step



More details of our setup
–  tradeshift.com/blog/just-add-servers/


We’re hiring!

–  tradeshift.com/jobs

Feb	  2,	  2013	   FOSDEM	  2013	  


