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Tradeshi 



Tradeshi 
Platform for your business interactions
Core services are free

~3 years old

One product – one production environment

~20 developers

Copenhagen, DK and San Francisco, CA
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Slow test is slow 



Why scale? Fast feedback 
Integration tests (IT): Selenium 2 from Geb (Java/Groovy)
Run by Jenkins on every change


Takes 2 hours to run all in sequence



10+ team branches, each trigger IT
Verified merges to master, also trigger IT


Pipeline is congestion point

Feedback not fast enough
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Release pipeline 
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Master	  

10	  team	  branches	  

Integra9on	  tests	  on	  changes	  

Any	  branch	  
(unit	  tested)	  

=	  10	  projects	  

Produc9on	  



The swarm 
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What? 
12 Jenkins slaves
– New slaves join swarm on boot
– Orchestrated by ec2-collective
– Configured by Puppet at boot


Tests distributed in sets
Longest processing time
Uses test run-time from last stable build

1 set per online slave (dynamic)

Feb	  2,	  2013	   FOSDEM	  2013	  





Fast tests! 

All sets are put into Jenkins build queue
Picked up by any slave
–  throttled to one per slave


12 slaves => 20 minutes
– Tests: 10 min

– Overhead: 10 min

24 slaves => 15 minutes
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Post processing 
Join when all sets complete
–  Triggered builds are blocking


Collect test results
–  JUnit, HTML, screenshots, videos, console logs = 

500 MB/run
–  Curl request to Jenkins API


Process test results
–  JVM outputs, slice console logs, archive artifacts
–  Custom groovy script
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Optimizations 



Optimizations 

Only on ITCase file-level, file scan

Only on spec level
– min time = longest running spec


Only scale test processing time
– 10 minutes today
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Lessons learned 



Parallelization overhead 

Swarm setup and tear down
–  node initialization and test result collection


Tests break a lot when run in parallel
Fixing tests and code hurts
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‘Random failures’ 
Failures appear probabilistic / random
– Order dependencies
– Timing issues
– Rebuild ‘fixes’ the tests


Slave failures
– Weakest link breaks the pipeline
– 24 slaves => 1 filled up due to slow mount => 

pipeline broken
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Cost optimization 

AWS EC2 instances:
– 1/2 price gave 3/4 performance
– 4/3 swarm size gave 1/4 price reduction

– Equivalent performance


Swarm is offline when not used
– Kept online for 1 hour after use
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Credits 
puppetlabs.com
github.com/andersdyekjaerhansen/ec2_collective

Jenkins and plugins

–  Swarm plugin, parameterized trigger, envinject, rebuild, join, 
throttle concurrent build, conditional build step



More details of our setup
–  tradeshift.com/blog/just-add-servers/


We’re hiring!

–  tradeshift.com/jobs
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