
OPERATING SYSTEM SUPPORT FOR
REDUNDANT MULTITHREADING

Björn Döbel (TU Dresden)

Brussels, 02.02.2013



Hardware Faults

• Radiation-induced soft errors
– Mainly an issue in avionics+space1

• DRAM errors in large data centers
– Google Study: > 2% failing DRAM DIMMs per year2

– ECC is not going to even detect a significant amount3

– Disk failure rate about 5%4

• Furthermore: decreasing transistor sizes, higher rate of
transient errors in CPU functional units5

1 Shirvani, McCluskey: Fault-Tolerant Systems in A Space Environment: The CRC ARGOS Project, 1998
2 Schroeder, Pinheiro, Weber: DRAM Errors in the Wild: A Large-Scale Field Study, SIGMETRICS 2009
3 Hwang, Stefanovici, Schroeder: Cosmic Rays Don’t Strike Twice: Understanding the Nature of DRAM Errors and the Implications

for System Design, ASPLOS 2012
4 Pinheiro, Weber, Barroso: Failure Trends in a Large Disk Drive Population, FAST 2007
5 Shivakumar, Kistler, Keckler: Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logic, DSN 2002

Operating System Support for Redundant Multithreading slide 1 of 19



Fault Tolerance: State of the Union

non-
COTS COTS

Hardware
errors

Software
errors

Operating System Support for Redundant Multithreading slide 2 of 19



Fault Tolerance: State of the Union

non-
COTS COTS

Hardware
errors

Software
errors

RAD-hard

CPUs

Redundant

Multithr.

Operating System Support for Redundant Multithreading slide 2 of 19



Fault Tolerance: State of the Union

non-
COTS COTS

Hardware
errors

Software
errors

RAD-hard

CPUs

Redundant

Multithr.

HP

NonStop

IBM z/OS

Operating System Support for Redundant Multithreading slide 2 of 19



Fault Tolerance: State of the Union

non-
COTS COTS

Hardware
errors

Software
errors

RAD-hard

CPUs

Redundant

Multithr.

HP

NonStop

IBM z/OS

SeL4

Minix3

Carburizer

Operating System Support for Redundant Multithreading slide 2 of 19



Fault Tolerance: State of the Union

non-
COTS COTS

Hardware
errors

Software
errors

RAD-hard

CPUs

Redundant

Multithr.

HP

NonStop

IBM z/OS

SeL4

Minix3

Carburizer

SWIFT

Encoded

Processing

Operating System Support for Redundant Multithreading slide 2 of 19



Fault Tolerance: State of the Union

non-
COTS COTS

Hardware
errors

Software
errors

RAD-hard

CPUs

Redundant

Multithr.

HP

NonStop

IBM z/OS

SeL4

Minix3

Carburizer

SWIFT

Encoded

Processing

Romain

Operating System Support for Redundant Multithreading slide 2 of 19



Transparent Replication as OS Service

Application

L4 Runtime
Environment

L4/Fiasco.OC microkernel

Operating System Support for Redundant Multithreading slide 3 of 19



Transparent Replication as OS Service

Replicated
Application

L4 Runtime
Environment Romain

L4/Fiasco.OC microkernel

Operating System Support for Redundant Multithreading slide 3 of 19



Transparent Replication as OS Service

Unreplicated
Application

Replicated
Application

L4 Runtime
Environment Romain

L4/Fiasco.OC microkernel

Operating System Support for Redundant Multithreading slide 3 of 19



Transparent Replication as OS Service

Replicated
Driver

Unreplicated
Application

Replicated
Application

L4 Runtime
Environment Romain

L4/Fiasco.OC microkernel

Operating System Support for Redundant Multithreading slide 3 of 19



Transparent Replication as OS Service

Reliable Computing Base

Replicated
Driver

Unreplicated
Application

Replicated
Application

L4 Runtime
Environment Romain

L4/Fiasco.OC microkernel

Operating System Support for Redundant Multithreading slide 3 of 19



Process-Level Redundancy6

Binary recompilation
• Complex, unprotected compiler
• Architecture-dependent

Reuse OS mechanisms

System calls for replica synchronization

Additional synchronization events

Virtual memory fault isolation
• Restricted to Linux user-level programs

Microkernel-based

6 Shye, Blomsted, Moseley, Reddi, Connors: PLR: A software approach to transient fault tolerance for multicore architectures, DSN

2009

Operating System Support for Redundant Multithreading slide 4 of 19



Process-Level Redundancy6

Binary recompilation
• Complex, unprotected compiler
• Architecture-dependent

Reuse OS mechanisms

System calls for replica synchronization
Additional synchronization events

Virtual memory fault isolation
• Restricted to Linux user-level programs

Microkernel-based
6 Shye, Blomsted, Moseley, Reddi, Connors: PLR: A software approach to transient fault tolerance for multicore architectures, DSN

2009

Operating System Support for Redundant Multithreading slide 4 of 19



Why A Microkernel?

• Small components
– Microrebootable7

– Custom-tailor reliability to application needs8

• That’s what we do in Dresden (tm).
– Reuse Fiasco.OC mechanisms instead of adding new

code to the RCB
• Lean system call interface

– Need to add special handling to fewer syscalls

7 Herder: Building a Dependable Operating System – Fault Tolerance in MINIX3, PhD Thesis, 2010
8 Sridharan, Kaeli: Eliminating microarchitectural dependency from architectural vulnerability, HPCA 2009

Operating System Support for Redundant Multithreading slide 5 of 19



Why A Microkernel?

• Small components
– Microrebootable7

– Custom-tailor reliability to application needs8

• That’s what we do in Dresden (tm).
– Reuse Fiasco.OC mechanisms instead of adding new

code to the RCB

• Lean system call interface
– Need to add special handling to fewer syscalls

7 Herder: Building a Dependable Operating System – Fault Tolerance in MINIX3, PhD Thesis, 2010
8 Sridharan, Kaeli: Eliminating microarchitectural dependency from architectural vulnerability, HPCA 2009

Operating System Support for Redundant Multithreading slide 5 of 19



Why A Microkernel?

• Small components
– Microrebootable7

– Custom-tailor reliability to application needs8

• That’s what we do in Dresden (tm).
– Reuse Fiasco.OC mechanisms instead of adding new

code to the RCB
• Lean system call interface

– Need to add special handling to fewer syscalls

7 Herder: Building a Dependable Operating System – Fault Tolerance in MINIX3, PhD Thesis, 2010
8 Sridharan, Kaeli: Eliminating microarchitectural dependency from architectural vulnerability, HPCA 2009

Operating System Support for Redundant Multithreading slide 5 of 19



Romain: Structure

Master

Operating System Support for Redundant Multithreading slide 6 of 19



Romain: Structure

Replica Replica Replica

Master

Operating System Support for Redundant Multithreading slide 6 of 19



Romain: Structure

Replica Replica Replica

Master

=

Operating System Support for Redundant Multithreading slide 6 of 19



Romain: Structure

Replica Replica Replica

Master

System
Call Proxy

Resource
Manager =

Operating System Support for Redundant Multithreading slide 6 of 19



Resource Management: Capabilities

1 22 3 4 5 6

Replica 1

Operating System Support for Redundant Multithreading slide 7 of 19



Resource Management: Capabilities

1 22 3 4 5 6

Replica 1

1 22 3 4 5 6

Replica 2

Operating System Support for Redundant Multithreading slide 7 of 19



Resource Management: Capabilities

1 22 3 4 5 6

Replica 1

1 22 3 4 5 6

Replica 2

1 2 3 4 5 6 Master

Operating System Support for Redundant Multithreading slide 7 of 19



Partitioned Capability Tables

1 2 3 4 5 6

Replica 1

1 2 3 4 5 6

Replica 2

1 2 3 4 5 6 Master

Marked used

Master private

Operating System Support for Redundant Multithreading slide 8 of 19



Overhead vs. Unreplicated Execution

9

9 Döbel, Härtig, Engel: Operating System Support for Redundant Multithreading, EMSOFT 2012
Operating System Support for Redundant Multithreading slide 9 of 19



Romain Lines of Code

Base code (main, logging, locking) 325
Application loader 375
Replica manager 628
Redundancy 153
Memory manager 445
System call proxy 311
Shared memory 281
Total 2,518
Fault injector 668
GDB server stub 1,304

Operating System Support for Redundant Multithreading slide 10 of 19



Hardening the RCB

• We need: Dedicated
mechanisms to protect the
RCB (HW or SW)

• We have: Full control over
software

• Use FT-encoding compiler?

– Has not been done for
kernel code yet

– Only protects SW
components

• RAD-hardened hardware?

– Too expensive

Our proposal: Split
HW into ResCores and
NonRes-Cores

ResCore

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

Operating System Support for Redundant Multithreading slide 11 of 19



Hardening the RCB

• We need: Dedicated
mechanisms to protect the
RCB (HW or SW)

• We have: Full control over
software

• Use FT-encoding compiler?

– Has not been done for
kernel code yet

– Only protects SW
components

• RAD-hardened hardware?

– Too expensive

Our proposal: Split
HW into ResCores and
NonRes-Cores

ResCore

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

NonRes
Core

Operating System Support for Redundant Multithreading slide 11 of 19



Signaling Performance

Exploring master–replica
communication10

• 12x Intel Core2 2.6 GHz
• Replicas pinned to

dedicated physical cores
• Hyperthreading off 10

20

30

40

50

60

O
ve

rh
ea

d
in

%

Overhead by notification method

Local Faults
Migration
Sync IPC
Shared Mem

susan CRC32
DMR

susan CRC32
TMR

10 Döbel, Härtig: Who watches the watchmen? – Protecting Operating System Reliability Mechanisms, HotDep 2012

Operating System Support for Redundant Multithreading slide 12 of 19



How About Multithreading?

A1

A2

A3

A4

A1

A2

A3

A4

Operating System Support for Redundant Multithreading slide 13 of 19



How About Multithreading?

A1

A2

A3

A4

A1

A2

A3

A4

B1

B2

B3

B1

B2

B3

Operating System Support for Redundant Multithreading slide 13 of 19



How About Multithreading?

A1

A2

A3

A4

A1

A2

A3

A4

B1

B2

B3

B1

B2

B3

C1

C2

C3

C4

C1

C2

C3

C4

Operating System Support for Redundant Multithreading slide 13 of 19



Problem: Nondeterminism

A1

A2

A3

A4

A1

A2

A3

A4

B1

B2

B3

B1

B2

B3

C1

C2

C3

C3

C1

C2

C3

C4

Operating System Support for Redundant Multithreading slide 14 of 19



Problem: Nondeterminism

A1

A2

A3

A4

A1

A2

A3

A4

B1

B2

B3

C1

C2

C3

C3

C1

C2

C3

B1

B2

B3

B4

Operating System Support for Redundant Multithreading slide 14 of 19



Deterministic Multithreading

• Related work: Debugging multithreaded programs
– Slightly different requirement: determinism across runs

• Strong Determinism: All accesses to shared resources
happen in the same order11.

– Requires heavy involvement with shared memory
accesses

– Replicating SHM is slow
• Weak Determinism: All lock acquisitions in a program

happen in the same order12

– Intercept calls to pthread mutex {lock,unlock}

11 Liu, Curtsinger, Berger: DThreads: Efficient Deterministic Multithreading, OSDI 2011
12 Olszewski, Ansel, Amarasinghe: Kendo: Efficient Deterministic Multithreading in Software, ASPLOS 2009

Operating System Support for Redundant Multithreading slide 15 of 19



Deterministic Multithreading

• Related work: Debugging multithreaded programs
– Slightly different requirement: determinism across runs

• Strong Determinism: All accesses to shared resources
happen in the same order11.

– Requires heavy involvement with shared memory
accesses

– Replicating SHM is slow

• Weak Determinism: All lock acquisitions in a program
happen in the same order12

– Intercept calls to pthread mutex {lock,unlock}

11 Liu, Curtsinger, Berger: DThreads: Efficient Deterministic Multithreading, OSDI 2011
12 Olszewski, Ansel, Amarasinghe: Kendo: Efficient Deterministic Multithreading in Software, ASPLOS 2009

Operating System Support for Redundant Multithreading slide 15 of 19



Deterministic Multithreading

• Related work: Debugging multithreaded programs
– Slightly different requirement: determinism across runs

• Strong Determinism: All accesses to shared resources
happen in the same order11.

– Requires heavy involvement with shared memory
accesses

– Replicating SHM is slow
• Weak Determinism: All lock acquisitions in a program

happen in the same order12

– Intercept calls to pthread mutex {lock,unlock}

11 Liu, Curtsinger, Berger: DThreads: Efficient Deterministic Multithreading, OSDI 2011
12 Olszewski, Ansel, Amarasinghe: Kendo: Efficient Deterministic Multithreading in Software, ASPLOS 2009

Operating System Support for Redundant Multithreading slide 15 of 19



Externally Enforced Determinism

• Patch entries to pthread mutex {lock,unlock}
• Catch exception for every call
• Enforce ordering in side the master

Microbenchmark: 2 threads, global counter, 1 lock

Replication kind Execution time Overhead
Native execution 0.24 s 1.00 x

Unreplicated RomainMT 4.50 s 18.75 x
RomainMT: DMR 12.72 s 53.06 x
RomainMT: TMR 18.02 s 75.00 x

Operating System Support for Redundant Multithreading slide 16 of 19



Internal Determinism

• Exception for every lock/unlock hurts a lot!
• Non-contention case: get progress without exception

• Replication-aware pthreads library
– Shared memory between replicas
– Exchange per-lock progress information
– Only block if lock currently used by different thread in

other replica
• Problems:

– Replacing pthreads vs. binary-only support→ pthreads

is a shared lib anyway
– No support for different synchronization mechanisms
– New pthreads code becomes part of the RCB.

Operating System Support for Redundant Multithreading slide 17 of 19



Internal Determinism

• Exception for every lock/unlock hurts a lot!
• Non-contention case: get progress without exception
• Replication-aware pthreads library

– Shared memory between replicas
– Exchange per-lock progress information
– Only block if lock currently used by different thread in

other replica

• Problems:
– Replacing pthreads vs. binary-only support→ pthreads

is a shared lib anyway
– No support for different synchronization mechanisms
– New pthreads code becomes part of the RCB.

Operating System Support for Redundant Multithreading slide 17 of 19



Internal Determinism

• Exception for every lock/unlock hurts a lot!
• Non-contention case: get progress without exception
• Replication-aware pthreads library

– Shared memory between replicas
– Exchange per-lock progress information
– Only block if lock currently used by different thread in

other replica
• Problems:

– Replacing pthreads vs. binary-only support→ pthreads

is a shared lib anyway
– No support for different synchronization mechanisms
– New pthreads code becomes part of the RCB.

Operating System Support for Redundant Multithreading slide 17 of 19



Internal Determinism

Microbenchmark: 2 threads, global counter, 1 lock

Replication kind Execution time Overhead External det.
Native execution 0.24 s 1.00 x

Unreplicated RomainMT 0.27 s 1.13 x 18.75 x
RomainMT: DMR 0.46 s 1.92 x 53.06 x
RomainMT: TMR 1.43 s 6.01 x 75.00 x

Operating System Support for Redundant Multithreading slide 18 of 19



Conclusion

• Redundant Multithreading as an OS service
• Support for binary-only applications
• Benefit from microkernel by reuse and design
• Overheads <30%, often <5%
• Multithreading – external vs. internal determinism
• Work in progress (not in this talk):

– Shared memory handling is slow
– Bounded detection latency using a watchdog
– Dynamic adjustment of replication level and resource

usage

Operating System Support for Redundant Multithreading slide 19 of 19



Nothing to see here

This slide intentionally left blank.

Except for above text.

Operating System Support for Redundant Multithreading slide 20 of 19



What about signalling failures?

Missed CPU exceptions → detected by watchdog
Spurious CPU exceptions → detected by watchdog / state comparison

Transmission of corrupt state → detected during state comparison

Overwriting remote state during transmission
• NonResCore memory
• Accessible by ResCores, but not by other NonResCores
• Prevents overwriting other states
• Already available in HW: IBM/Cell

Operating System Support for Redundant Multithreading slide 21 of 19



Romain

http://www.dynamo-dresden.de

Operating System Support for Redundant Multithreading slide 22 of 19

http://www.dynamo-dresden.de

	Introduction

