
Perl's Diaspora
Should we fear the future?

Elizabeth Mattijsen
Brussels, 2 February 2013

Perl is DEAD!
• Haven't you heard?

• Or at least it's abdicating.

• Or its found its niche.

• It provides job security.

• But everybody is using it.

Not happy with Perl 5

• It does not have a number of features of
newer languages.

• It is very hard to add these new features
because of back compatibility issues.

• It is even harder to add new features
because of the innards of Perl 5.

• Macro-infused C-like language: Jenga!

Example

• ithreads.

• They are not threads as most people
know them.

• They are an emulation of fork() for
Windows backported to Unixes.

• Why?

• The architecture of Perl.

Alternatives?

• Perl 6 is an alternative.

• Better runtime for Perl 5 is an alternative.

• Other languages are an alternative.

• A new Perl 5 might be an alternative.

New Perl 5 initiatives

• Will they not take away attention from the
real Perl?

• Will they not fragment the developer base?

• Will it not be a bad thing all around?

• Perhaps, but it will be -Ofun.

• And it has happened many times before.

Some History first

• First, Larry made Perl 1.

• Then Perl 2.

• And then Perl 3.

• With Perl 4 things started to get hairy.

1991 - Versions of Perl 4

• No extension mechanism.

• Extensions hardcoded in the core.

• oraperl, sybperl were most used.

• Hard to maintain with core changes.

• Fixed in Perl 5!

Perl 5 in 1994

• Design started in 1993.

• Modules, objects, extensions.

• Easy language for scripting CGI.

• Perl becomes mainstream.

• Core development relatively easy.

• But Jenga develops quickly.

1998 - Topaz

• "Perl is hard to maintain"

• Written in C++ rather than C.

• Perl for the 22nd century!

• http://www.perl.com/pub/1999/09/topaz.html

• Abandoned in 2000.

• But became one the inspirations of Perl 6.

http://www.perl.com/pub/1999/09/topaz.html
http://www.perl.com/pub/1999/09/topaz.html

2000 - Perl 6

• A Community rewrite of Perl.

• RFC input from all over the world.

• Still being digested by Larry in some parts.

• Result: a design document for Perl 6.

• But how to implement?

2001 - Parrot

• The Runtime (more modernly VM)

• Perl 6 and maybe other scripting languages.

• Initially an April Fool's joke.

• It got out of hand. Seriously.

• It is now an Edsel.

2005 - Pugs

• By Audrey Tang.

• Prototype Perl 6 implementation in Haskell.

• Provided many pointers for Rakudo.

• Not many core developers versed enough
in Haskell to be able to contribute.

• Stalled in 2006.

2006 - Perlito

• Research project of Flavio Glock.

• Compile (subset of) Perl 5 / 6 code.

• Execute in Javascript, Python, Ruby,
Common Lisp, Go.

• Execute Perl 5 / 6 inside browser.

• Considered complete in 2013.

2006 - Moose

• New object system for Perl 5.

• By Stevan Little et al.

• Inspired by Perl 6 and many others.

• Bolted on Perl 5, requires many modules.

• Lighter versions: Moo, Mo.

• Widely in production.

2009 - Rakudo

• Split from the Parrot project by Patrick
Michaud & Jonathan Worthington.

• Further development of Perl 6.

• 6model abstracted object system.

• Distancing from Parrot.

• Other VM's should be possible.

2010 - Niecza

• Perl 6 implementation by Stephen O'Rear.

• From scratch.

• Using .NET / mono as VM.

• Potentially more core developers.

• But stuck with a single VM.

2011 - NQP

• Not Quite Perl by Patrick Michaud &
Jonathan Worthington.

• Subset of Perl 6.

• The "miniperl" of Perl 6.

• Bootstrap the "real" Perl 6.

• VM agnostic (not quite yet).

2011 - p5-mop

• Integrate Moose features into Perl 5 core.

• Stalled in 2013 because of difficulty in
implementation in Perl 5.

• Jenga strikes again.

2012 - STD5

• Inspired by Perl Reunification Summit.

• Parse Perl 5 code inside Rakudo.

• Will not include indirect object syntax.

• Stalled for lack of tuits.

2012 - nqp-jvm

• By Jonathan Worthington.

• Writes Java Bytecode for Rakudo.

• Allows Perl 6 to run on JVM.

• Moving forward very fast now.

2013 - Moe

• By Stevan Little et al.

• "Pugs for Perl 5".

• p5-mop frustrations coming out.

• May turn out to be just a thought
experiment or a research project.

2013 - p2

• p2 by Reini Urban.

• Perl 5+i like syntax.

• Using potion as a backend.

• Directly writes machine code, so fast!

• Potential Rakudo backend.

• Community development uncertain.

Now

• Classic Perl 5 (p5p).

• Rakudo Perl 6 (on Parrot & JVM).

• Niecza Perl 6 (on .NET / mono).

• Moe (Pugs for Perl 5).

• p2 (Perl 5+i on potion).

Fear the Future?

• No, but we should be vigilant.

• We should do more rather than talk.

Classic Perl 5 (p5p)

• Suffering from major Jenga.

• Codebase was bad in 1998 (Topaz).

• In some ways better, in some ways worse.

• Stopped p5-mop effort.

• Still on yearly release schedule.

Rakudo

• Moving away from Parrot.

• Seems like running on JVM before summer.

• Has a healthy developers community.

• Has monthly Rakudo * updates.

Niecza

• In some ways more complete Perl 6.

• And faster than Rakudo on Parrot.

• Healthy developer community.

• But stuck to single VM.

Moe / p2

• Very early in their lifecycle.

• Who knows what they will bring?

Final word of warning

• CPU's are not getting faster.

• But we will get more CPU's per box.

• Writing threaded programs is hard.

• Perl will need auto-threading capabilities.

• Should be a USP of modern Perl.

Perl 6 can auto-thread

• Perl 6 specification defines auto-threading.

• System uses multiple threads when it can.

• No code changes, maybe some hints.

• Check out "junction", "hyper" and "race".

Future of Perl 6?

• Check out #perl6 on freenode.

• Friendly people working hard on Perl 6.

Future of Perl 5?

• Follow closely where Moe is going.

Perl's Diaspora
Should we fear the future?

Elizabeth Mattijsen
Brussels, 2 February 2013

Questions?

