Boost.odeint

Solving ordinary differential equations in C++

Karsten Ahnert'? and Mario Mulansky?

1 Ambrosys GmbH, Potsdam
2 nstitut fur Physik und Astronomie, Universitat Potsdam

February 2, 2013

OIS, Google

& ambro -, CODE

e 201!

What is an ODE? — Examples

Newtons equations

Reaction and relaxation
equations (i.e. blood alcohol
content, chemical reaction
rates)

Interactmg neurons

@ Many examples in physics, biology, chemistry, social
sciences
@ Fundamental in mathematical modelling

What is an ODE?

= f(X(t), t) short form x = f(x,t)

@ x(t) —wanted function (trajectorie)
@ t—indenpendent variable (time)
@ f(x,t)—defines the ODE, r.h.s

Initial Value Problem (IVP):

x = f(x,1), x(t=0)=xp

Numerical integration of ODEs

Find a numerical solution of an ODE and its IVP

x =f(x,t), x(t=0)=xp

Example: Explicit Euler

x(t+ At) = x(t) + At - f(x(1), 1) + O(A?)

General scheme of order s
x(t) — x(t+ At) , or

x(t+ At) = Fix(t) + O(AtsT)

odeint

Solving ordinary differential equations in C++

Open source
@ Boost license — do whatever you want do to with it
@ Boost library — will be released with v1.53 on Monday

Download

@ www.odeint.com

Modern C++

@ Paradigms: Generic, Template-Meta and Functional
Programming

@ Fast, easy-to-use and extendable.
@ Container independent
@ Portable

Motivation

We want to solve ODEs x = f(x, t) with:

@ using double, std: :vector, std: :array, ...as state
types.

@ with complex numbers,

@ on one, two, three-dimensional lattices, and or on graphs.
@ on graphic cards.

@ with arbitrary precision types.

Existing libraries support only one state type!

Container independent and portable algorithms are needed!

Example — Pendulum

Pendulum with friction and driving: no analytic solution

p = —wgsingo—ugb—i-esinwb-t

Create a first order ODE

X1=¢, X2=¢
X1 = Xo
Xo = —wqg SiN Xy — uXo + eSinwgt

X1 and xo are the state space variables

Let’s solve the pendulum example numerically

#include <boost/numeric/odeint.hpp>

namespace odeint = boost::numeric::odeint;

X{ = Xo, Xo= —wgSiNXy — uXo +esSinwgt

typedef std::array<double, 2> state_type;

Let’s solve the pendulum example numerically

X1 = Xo, Xg = —wg sin Xy — uXo + esinwgt w(z) =1

struct pendulum
{

double m _mu, m_omega, m_eps;

pendulum (double mu,double omega,double eps)
m_mu (mu) ,m_omega (omega) ,m_eps (eps) { }

void operator () (const state_type &x,
state_type &dxdt,double t) const

dxdt [0] x[1];
dxdt[1l] = -sin(x[0]) — m_mu *= x[1] +
m_eps * sin(m_omegaxt);

Let’s solve the pendulum example numerically

¢(0) =x1(0) =1, ¢(0) =x(0) =0

odeint::runge_kuttad4< state_type > rk4;
pendulum p(0.1 , 1.05 , 1.5);

state_type x =
double t = 0.0;

const double dt = 0.01;
rk4.do_step(p , x , t , dt);
t += dt;

x(0) — x(Al)

Let’s solve the pendulum example numerically

std::cout<<t<<" "<< x[0]<<" "<<x[1]<<"\n";
for(size_t i=0 ; 1i<10 ; ++i)
{

rk4.do_step(p , x , t

, dt)
t += dt;

std::cout<<t<<" "<< x[0]<<" "<<x[1]<<"\n";

}

x(0) = x(At) — x(2At) — x(3AL) — ...

Let’s solve the pendulum example numerically

std::cout<<t<<" "<< x[0]<<" "<<x[1]<<"\n";
for(size_t i=0 ; i<10 ; ++i)
{

rkd4.do_step(p , x , t , dt);

t += dt;

std::cout<<t<<" "<< x[0]<<" "<<x[1]<<"\n";
}

x(0) = x(At) — x(2At) — x(3AL) — ...

T T

20 40

Structure of odeint

integrate

iterator

N g

Stepper

W

computational backend

State Type
/",5,;’ ________ i 1\5\\
Operations I Algebra

Independent Algorithms

What?
Container- and computation-independent implementation of the
numerical algorithms.

Why?
High flexibility and applicability, odeint can be used for virtually
any formulation of an ODE.

How?
Detach the algorithm from memory management and
computation details and make each part interchangeable.

Type Declarations
Tell odeint which types your are working with:

/x define your types x/

typedef vector<double> state_type;
typedef vector<double> deriv_type;
typedef double value_type;

typedef double time_ type;

/x define your stepper algorithm x/
typedef runge_kuttad< state_type , value_type ,
deriv_type , time_type > stepper_type;

Reasonable standard values for the template parameters
allows for:

typedef runge_kuttad<state_type> stepper_type;

Vector Computations
X1 =Xo+ by At-Fy+ -+ bs- At - Fs
Split into two parts:

1. Algebra: responsible for iteration over vector elements

2. Operations: does the mathematical computation on the
elements

Similar to std: : for_each

Algebra algebra;

algebra.for_each3(x1 , x0 , F1 ,
Operations::scale_sum2(1.0, blxdt);

Vector Computations
Xy =Xo+by-At-Fy 4.+ bs- At - F
Split into two parts:

1. Algebra: responsible for iteration over vector elements

2. Operations: does the mathematical computation on the
elements

Similar to std: : for_each

Algebra algebra;

algebra.for_each3(x1 , x0 , F1 ,
Operations::scale_sum2(1.0, blxdt);

The types Algebra and operations are template parameters
of the steppers, hence exchangeable.

For example vector< double >:

typedef
typedef
typedef
typedef

typedef

vector< double > state_type;
vector< double > deriv_type;
double value_type;
double time_type;

runge_kuttad< state_type , value_type
deriv_type , time_type ,
range_algebra ,
default_operations
> stepper_type

4

As these are also the default values, this can be shortened:

typedef

runge_kuttad<state_type> stepper_type;

Other Algebras

Additional computation backends included in odeint:
array_algebra: for std::array, faster than range_algebra for
some compilers.

vector_space_algebra: for state_types that have operators
+, = defined.

fusion_algebra: works with compile-time sequences like
fusion: :vector of Boost.Units

thrust_algebra & thrust_operations: Use thrust library to
perform computation on CUDA graphic cards

mkl_operations: Use Intel's Math Kernel Library

See tutorial and documentation on www.odeint . com for more.

Conclusion

odeint is a modern C++ library for solving ODEs that is

@ easy-to-use
@ highly-flexible
e data types (topology of the ODE, complex numbers,
precision, ...)
e computations (CPU, CUDA, OpenMP, ...)

o fast

Used by:

NetEvo — Simulation dynamical networks

OMPL - Open Motion Planning Library

icicle — cloud/precipitation model

Score — Smooth Particle Hydrodynamics Simulation (com.)
VLE - Virtual Environment Laboratory (planned to use odeint)

Several research groups

Roadmap

Near future:
@ Implicit steppers
@ Multiprozessor backends (OpenMP, MPI, HPX)

Further plans:
@ Dormand-Prince 853 steppers
@ More algebras: cublas, TBB, Boost SIMD library

Perspective:
@ C++11 version
@ sdeint — methods for stochastic differential equations
@ ddeint — methods for delay differential equations

