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Program Agenda 

 Improvements for disk-bound queries 

 Subquery improvements 

 Index condition pushdown 

 Misc. optimizer improvements 
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 Main idea: Sort keys retrieved from index before accessing table 

 Benefits: 

– Read more rows from a page while it is still in buffer pool 

– Increased benefits from prefetching pages into the buffer pool 

– Sequential instead of random disk access? 

 Range scan:  

– Disk Sweep Multi-Range Read (DS-MRR) 

 Index lookup (Ref access): 

– Batched Key Access 

MySQL 5.6:  
Improvements for Disk-Bound Queries 
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MySQL 5.5: Data Access without DS-MRR 
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MySQL 5.6: Data Access with DS-MRR 
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DBT-3, Scale 10 (23 GB) 

innodb_buffer_pool_size= 1 GB 
(disk-bound) 

read_rnd_buffer_size = 4 MB 
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MySQL 5.5 vs MySQL 5.6: 
DBT-3 Queries using DS-MRR 
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DS-MRR 

 Default:  Cost-based choice for tables larger than  

innodb_buffer_pool_size    (Otherwise: off) 

 Force MRR on:  

set optimizer_switch = ’mrr_cost_based=off’; 

 Force MRR off:  

set optimizer_switch = ’mrr=off’; 

 Configurable size for buffer used to sort keys: 

read_rnd_buffer_size (Default: 256 kB) 

 

 

Usage 
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DS-MRR 

mysql> explain select l_suppkey, sum(l_extendedprice * (1 - l_discount)) 

from lineitem where l_shipdate >= '1996-07-01' and l_shipdate < 

date_add('1996-07-01', interval '90' day) group by l_suppkey\G  

*************************** 1. row ***************************  

           id: 1  

  select_type: SIMPLE  

        table: lineitem  

         type: range  

possible_keys: i_l_shipdate  

          key: i_l_shipdate  

      key_len: 4  

          ref: NULL  

         rows: 4354466  

        Extra: Using index condition; Using MRR; Using temporary; Using 

filesort  

1 row in set (0.00 sec)  

 

EXPLAIN 
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DBT-3, Query 15       
Scale 10 (23 GB) 

innodb_buffer_pool_size= 1 GB 
(disk-bound) 

Varying read_rnd_buffer_size 

optimizer_switch settings:     
MRR Off: 
  mrr=off 
MRR Cost-based:        
 mrr=on,mrr_cost_based=on 
MRR Always on: 
 mrr=on,mrr_cost_based=off 

DS-MRR: Sort Buffer Size Matters 
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MySQL 5.6: Batched Key Access (BKA) 

DS-MRR Applied to Join Buffering 
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DBT-3, Scale 10 (23 GB) 

innodb_buffer_pool_size= 1 GB 
(disk-bound) 

join_buffer_size = 4 MB 

optimizer_switch = 
’batched_key_access=on, 
mrr_cost_based=off’ 
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MySQL 5.5 vs MySQL 5.6: Queries using BKA 
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Batched Key Access 

 Default:  Off 

 Force BKA on:  

set optimizer_switch = 

’batched_key_access=on,mrr_cost_based=off’; 

 Configurable size for buffering keys to sort: 

join_buffer_size (Default: 256 kB) 

 

 

 

 

 

Usage 
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Batched Key Access 

mysql> explain select sum(l_extendedprice* (1 - l_discount)) as revenue from 

lineitem, part where p_partkey = l_partkey and p_brand = 'Brand#22’ and 

l_quantity >= 6 and p_size between 1 and 5;  

+----+-------------+----------+------+---------------------------------+-- 

| id | select_type | table    | type | possible_keys                   | 

key                 | key_len | ref                 | rows   | 

Extra                                            |  

+----+-------------+----------+------+---------------------------------+-- 

|  1 | SIMPLE      | part     | ALL  | PRIMARY                         | 

NULL                | NULL    | NULL                | 200000 | Using 

where                                         |  

|  1 | SIMPLE      | lineitem | ref  | i_l_suppkey_partkey,i_l_partkey | 

i_l_suppkey_partkey | 5       | dbt3.part.p_partkey |     15 | Using where; 

Using join buffer (Batched Key Access) |  

+----+-------------+----------+------+---------------------------------+-- 

2 rows in set (0.00 sec)  

 

EXPLAIN 
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DBT-3, Query 2 
Scale 10 (23 GB) 

innodb_buffer_pool_size= 1 GB 
(disk-bound) 

Varying join_buffer_size 

optimizer_switch = 
’batched_key_access=on, 
mrr_cost_based=off’ 

Batched Key Access: Buffer Size Matters 
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MySQL 5.6: Subquery Improvements 

select o_orderdate, o_totalprice 

from orders  

where o_orderkey in (select l_orderkey 

                     from lineitem 

                     where l_quantity > 49); 

 

 New optimizations in MySQL 5.6: 

– Subquery Materialization 

– Semi-join 

Optimize IN subqueries 
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1. Execute subquery and store result in a temporary table with unique 

index (For quick look-up and duplicate removal.) 

2. Execute outer query and check for matches in temporary table. 

 

select o_orderdate, o_totalprice 

from orders  

where o_orderkey in (select l_orderkey 

                     from lineitem 

                     group by l_orderkey  

                     having sum(l_quantity) > 313); 

 

Subquery Materialization 

Materialize 
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DBT-3, Scale 10 (23 GB) 

innodb_buffer_pool_size= 24 GB 
(CPU-bound) 

For Q20: 
optimizer_switch = 
’semijoin=off; 
subquery_materialization_cost_
based=off’ 
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MySQL 5.5 vs MySQL 5.6:  
Subquery Materialization 

Q18: 

MySQL 5.5: ~37 years? 

MySQL 5.6: 69 seconds 
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MySQL 5.6: Semi-join 

 Convert subquery to inner join, BUT 

– Need some way to remove duplicates 

 Different strategies for duplicate removal: 

– FirstMatch (equivalent to traditional subquery execution) 

– LooseScan (index scan, skip duplicates) 

– Materialization:  MatLookup (like subquery materialization),  

        MatScan (materialized table is first in join order) 

– Duplicate WeedOut (insert result rows of semi-join query into temporary 

table with unique index; duplicate rows will be rejected. Any join order.) 

 If duplicate removal is not necessary: 

– Table pull-out 
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Semi-join, cont. 

 Main advantage: 

– Opens up for more optimal ”join orders”. 

– Example: 

 select o_orderdate, o_totalprice 
from orders  
where o_orderkey in (select l_orderkey 
                     from lineitem 
                     where l_shipDate=’1996-09-30’); 

 Will process less rows if starting with lineitem instead of orders 

 Restriction: 

– Cannot use semi-join if subquery contains union or aggregation 
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select o_totalprice  

from orders 

where o_orderkey in  

(select l_orderkey        

 from lineitem 

 where l_shipdate =   

      '1996-09-30'); 

DBT-3, Scale 10 (23 GB) 

innodb_buffer_pool_size= 24 GB (CPU-bound)   
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MySQL 5.6: Semi-join: Example 1 
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select 

 sum(l_quantity*  

    l_extendedprice) 

from lineitem 

where l_orderkey in   

(select o_orderkey  

 from orders 

 where o_orderdate =  

      '1996-09-30'); 

DBT-3, Scale 10 (23 GB) 

innodb_buffer_pool_size= 24 GB (CPU-bound)  
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MySQL 5.6: Semi-join: Example 2 
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select s_name, s_address 

from supplier 

where s_suppkey in 

(select ps_suppkey 

 from partsupp, part 

 where ps_partkey=p_partkey   

   and p_name like 'grey%‘ 

   and ps_availqty > 9990); 

DBT-3, Scale 10 (23 GB) 

innodb_buffer_pool_size= 24 GB (CPU-bound)  
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MySQL 5.6: Semi-join: Example 3 
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Semi-join 

 Default: All IN sub-queries that do not contain aggreation or union are 

converted to semi-join 

 Disable semi-join conversion: 

set optimizer_switch = ’semijoin=off’; 

 Disable individual semi-join strategies:  

set optimizer_switch = ’firstmatch=off’; 

set optimizer_switch = ’loosescan=off’; 

set optimizer_switch = ’materialization=off’; 

 Force traditional IN-to-EXIST evaluation: 

set optimizer_switch = ’semijoin=off,materialization=off’; 

 

 

 

Usage 
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MySQL 5.6: Index Condition Pushdown (ICP) 

select sum(l_extendedprice * l_discount) as revenue  

from lineitem force index(j_l_shipdate_discount_quantity)  

where l_shipdate >= '1994-01-01'  

  and l_shipdate < date_add('1994-01-01’,interval '1' year)  

  and l_discount between 0.09 - 0.01 and 0.09 + 0.01  

  and l_quantity < 24;  

 

DBT3 Query 6: Forecasting Revenue Change Query  

Need force index to get ICP for this query   

Index range scan criteria 
Conditions evaluated during index scan 
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DBT-3, Query 6 
Scale 10 (23 GB) 

innodb_buffer_pool_size= 24 GB 
(CPU-bound) 

optimizer_switch settings: 
index_condition_pushdown = on/off 

MySQL 5.6: Index Condition Pushdown 
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Index Condition Pushdown 

mysql> explain select sum(l_extendedprice * l_discount) as revenue from 

lineitem force index (i_l_shipdate_discount_quantity) where l_shipdate >= 

'1994-01-01' and l_shipdate < date_add( '1994-01-01' , interval '1' year) 

and l_discount between 0.09 - 0.01 and 0.09 + 0.01 and l_quantity < 2\G 

*************************** 1. row *************************** 

           id: 1 

  select_type: SIMPLE 

        table: lineitem 

         type: range 

possible_keys: i_l_shipdate_discount_quantity 

          key: i_l_shipdate_discount_quantity 

      key_len: 16 

          ref: NULL 

         rows: 18940908 

        Extra: Using index condition 

1 row in set (0.00 sec)  
 

EXPLAIN 
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Index Condition Pushdown 

mysql> explain FORMAT=JSON select sum(l_extendedprice * l_discount) as 
revenue from lineitem force index (i_l_shipdate_discount_quantity) where 
l_shipdate >= '1994-01-01' and l_shipdate < date_add( '1994-01-01' , 
interval '1' year) and l_discount between 0.09 - 0.01 and 0.09 + 0.01 and 
l_quantity < 24; 

| { 

  "query_block": { 

    "select_id": 1, 

    "table": { 

      "table_name": "lineitem", 

      "access_type": "range", 

      ... 

      "filtered": 100, 

      "index_condition": "((`dbt3`.`lineitem`.`l_shipDATE` >= '1994-01-01') 
and (`dbt3`.`lineitem`.`l_shipDATE` < ('1994-01-01' + interval '1' year)) 
and (`dbt3`.`lineitem`.`l_discount` between (0.09 - 0.01) and (0.09 + 
0.01)) and (`dbt3`.`lineitem`.`l_quantity` < 24))" 

    } 

 
 

EXPLAIN FORMAT=JSON 
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 ORDER BY with LIMIT optimization 

 Delayed Materialization of Derived Tables 

 Extended secondary keys (InnoDB) 

 Reduced optimization time for large IN-lists 

 Reduced optimization time for many-table joins 

 Reduced space usage for large temporary tables with VARCHAR 

 Speed-up of information schema queries  

 EXPLAIN for INSERT, UPDATE, DELETE 

 Structured EXPLAIN (JSON format) 

 Optimizer trace 

MySQL 5.6:   
More Optimizer Improvements 
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 My blog: 

– http://oysteing.blogspot.com/ 

 Optimizer team blog: 

– http://mysqloptimizerteam.blogspot.com/ 

 What’s new in MySQL 5.6: 

– http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html 

More information 
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The preceding is intended to outline our general product direction. It is 

intended for information purposes only, and may not be incorporated 

into any contract. It is not a commitment to deliver any material, code, 

or functionality, and should not be relied upon in making purchasing 

decisions. The development, release, and timing of any features or 

functionality described for Oracle’s products remains at the sole 

discretion of Oracle. 
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Q&A 
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