
When and How to Take
Advantage of New Optimizer
Features in MySQL 5.6

Øystein Grøvlen

Senior Principal Software Engineer, MySQL

Oracle

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 2

Program Agenda

 Improvements for disk-bound queries

 Subquery improvements

 Index condition pushdown

 Misc. optimizer improvements

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 3

 Main idea: Sort keys retrieved from index before accessing table

 Benefits:

– Read more rows from a page while it is still in buffer pool

– Increased benefits from prefetching pages into the buffer pool

– Sequential instead of random disk access?

 Range scan:

– Disk Sweep Multi-Range Read (DS-MRR)

 Index lookup (Ref access):

– Batched Key Access

MySQL 5.6:
Improvements for Disk-Bound Queries

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 4

MySQL 5.5: Data Access without DS-MRR

Index Table

Index

scan

Random access

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 5

MySQL 5.6: Data Access with DS-MRR

InnoDB Example

Index Table

Index

scan

PKs in

index order

PKs in

PK order

Sort

Sweep-

read rows

Collect

PKs in

buffer

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 6

DBT-3, Scale 10 (23 GB)

innodb_buffer_pool_size= 1 GB
(disk-bound)

read_rnd_buffer_size = 4 MB

0 %

20 %

40 %

60 %

80 %

100 %

Q3 Q4 Q10 Q14 Q15

Query Execution Time Relative to MySQL 5.5

MySQL 5.5 MySQL 5.6

MySQL 5.5 vs MySQL 5.6:
DBT-3 Queries using DS-MRR

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 7

DS-MRR

 Default: Cost-based choice for tables larger than

innodb_buffer_pool_size (Otherwise: off)

 Force MRR on:

set optimizer_switch = ’mrr_cost_based=off’;

 Force MRR off:

set optimizer_switch = ’mrr=off’;

 Configurable size for buffer used to sort keys:

read_rnd_buffer_size (Default: 256 kB)

Usage

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 8

DS-MRR

mysql> explain select l_suppkey, sum(l_extendedprice * (1 - l_discount))

from lineitem where l_shipdate >= '1996-07-01' and l_shipdate <

date_add('1996-07-01', interval '90' day) group by l_suppkey\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: lineitem

 type: range

possible_keys: i_l_shipdate

 key: i_l_shipdate

 key_len: 4

 ref: NULL

 rows: 4354466

 Extra: Using index condition; Using MRR; Using temporary; Using

filesort

1 row in set (0.00 sec)

EXPLAIN

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 9

DBT-3, Query 15
Scale 10 (23 GB)

innodb_buffer_pool_size= 1 GB
(disk-bound)

Varying read_rnd_buffer_size

optimizer_switch settings:
MRR Off:
 mrr=off
MRR Cost-based:
 mrr=on,mrr_cost_based=on
MRR Always on:
 mrr=on,mrr_cost_based=off

DS-MRR: Sort Buffer Size Matters

205

4
0

50

100

150

200

250

0,25 0,5 1 2 4 8 16 32 64
Q

u
e

ry
 T

im
e

 (
M

in
u

te
s

)
MRR Sort Buffer Size (MB)

MRR Off MRR Cost-based MRR Always On

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 10

MySQL 5.6: Batched Key Access (BKA)

DS-MRR Applied to Join Buffering

Index

PKs in join

buffer order

PKs in

PK order

Sort

Table2
Sweep-

read rows

Collect

PKs in

buffer
Table1

Join buffer

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 11

DBT-3, Scale 10 (23 GB)

innodb_buffer_pool_size= 1 GB
(disk-bound)

join_buffer_size = 4 MB

optimizer_switch =
’batched_key_access=on,
mrr_cost_based=off’

0 %

25 %

50 %

75 %

100 %

125 %

150 %

175 %

200 %

Q2 Q5 Q8 Q9 Q11 Q13 Q17 Q19 Q20 Q21

Query Execution Time Relative to MySQL 5.5

MySQL 5.5 MySQL 5.6

MySQL 5.5 vs MySQL 5.6: Queries using BKA

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 12

Batched Key Access

 Default: Off

 Force BKA on:

set optimizer_switch =

’batched_key_access=on,mrr_cost_based=off’;

 Configurable size for buffering keys to sort:

join_buffer_size (Default: 256 kB)

Usage

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 13

Batched Key Access

mysql> explain select sum(l_extendedprice* (1 - l_discount)) as revenue from

lineitem, part where p_partkey = l_partkey and p_brand = 'Brand#22’ and

l_quantity >= 6 and p_size between 1 and 5;

+----+-------------+----------+------+---------------------------------+--

| id | select_type | table | type | possible_keys |

key | key_len | ref | rows |

Extra |

+----+-------------+----------+------+---------------------------------+--

| 1 | SIMPLE | part | ALL | PRIMARY |

NULL | NULL | NULL | 200000 | Using

where |

| 1 | SIMPLE | lineitem | ref | i_l_suppkey_partkey,i_l_partkey |

i_l_suppkey_partkey | 5 | dbt3.part.p_partkey | 15 | Using where;

Using join buffer (Batched Key Access) |

+----+-------------+----------+------+---------------------------------+--

2 rows in set (0.00 sec)

EXPLAIN

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 14

DBT-3, Query 2
Scale 10 (23 GB)

innodb_buffer_pool_size= 1 GB
(disk-bound)

Varying join_buffer_size

optimizer_switch =
’batched_key_access=on,
mrr_cost_based=off’

Batched Key Access: Buffer Size Matters

59.6

1.4
0

10

20

30

40

50

60

70

16k 64k 256k 1M 4M 16M 64M
Q

u
e

ry
 T

im
e

 (
M

in
u

te
s

)
Join Buffer Size (Bytes)

BKA Off BKA On

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 15

MySQL 5.6: Subquery Improvements

select o_orderdate, o_totalprice

from orders

where o_orderkey in (select l_orderkey

 from lineitem

 where l_quantity > 49);

 New optimizations in MySQL 5.6:

– Subquery Materialization

– Semi-join

Optimize IN subqueries

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 16

1. Execute subquery and store result in a temporary table with unique

index (For quick look-up and duplicate removal.)

2. Execute outer query and check for matches in temporary table.

select o_orderdate, o_totalprice

from orders

where o_orderkey in (select l_orderkey

 from lineitem

 group by l_orderkey

 having sum(l_quantity) > 313);

Subquery Materialization

Materialize

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 17

DBT-3, Scale 10 (23 GB)

innodb_buffer_pool_size= 24 GB
(CPU-bound)

For Q20:
optimizer_switch =
’semijoin=off;
subquery_materialization_cost_
based=off’

87 %

0.000006 %

48 %

0 %

20 %

40 %

60 %

80 %

100 %

Q16 Q18 Q20

Query Execution Time Relative to MySQL 5.5

MySQL 5.5 MySQL 5.6

MySQL 5.5 vs MySQL 5.6:
Subquery Materialization

Q18:

MySQL 5.5: ~37 years?

MySQL 5.6: 69 seconds

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 18

MySQL 5.6: Semi-join

 Convert subquery to inner join, BUT

– Need some way to remove duplicates

 Different strategies for duplicate removal:

– FirstMatch (equivalent to traditional subquery execution)

– LooseScan (index scan, skip duplicates)

– Materialization: MatLookup (like subquery materialization),

 MatScan (materialized table is first in join order)

– Duplicate WeedOut (insert result rows of semi-join query into temporary

table with unique index; duplicate rows will be rejected. Any join order.)

 If duplicate removal is not necessary:

– Table pull-out

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 19

Semi-join, cont.

 Main advantage:

– Opens up for more optimal ”join orders”.

– Example:

 select o_orderdate, o_totalprice
from orders
where o_orderkey in (select l_orderkey
 from lineitem
 where l_shipDate=’1996-09-30’);

 Will process less rows if starting with lineitem instead of orders

 Restriction:

– Cannot use semi-join if subquery contains union or aggregation

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 20

select o_totalprice

from orders

where o_orderkey in

(select l_orderkey

 from lineitem

 where l_shipdate =

 '1996-09-30');

DBT-3, Scale 10 (23 GB)

innodb_buffer_pool_size= 24 GB (CPU-bound)

57.83

10.84

0.06 0.07
0

10

20

30

40

50

60

70

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

Trad. Subquery Mat.

LooseScan DupsWeedout

MySQL 5.6: Semi-join: Example 1

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 21

select

 sum(l_quantity*

 l_extendedprice)

from lineitem

where l_orderkey in

(select o_orderkey

 from orders

 where o_orderdate =

 '1996-09-30');

DBT-3, Scale 10 (23 GB)

innodb_buffer_pool_size= 24 GB (CPU-bound)

67.02

27.61

0.03
0

10

20

30

40

50

60

70

80

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

Trad. Subquery Mat. Table Pullout

MySQL 5.6: Semi-join: Example 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 22

select s_name, s_address

from supplier

where s_suppkey in

(select ps_suppkey

 from partsupp, part

 where ps_partkey=p_partkey

 and p_name like 'grey%‘

 and ps_availqty > 9990);

DBT-3, Scale 10 (23 GB)

innodb_buffer_pool_size= 24 GB (CPU-bound)

12.74

0.89 0.89

12.53 12.49

0

2

4

6

8

10

12

14

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

Trad. Subquery Mat.

MatLookup FirstMatch

DupsWeedout

MySQL 5.6: Semi-join: Example 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 23

Semi-join

 Default: All IN sub-queries that do not contain aggreation or union are

converted to semi-join

 Disable semi-join conversion:

set optimizer_switch = ’semijoin=off’;

 Disable individual semi-join strategies:

set optimizer_switch = ’firstmatch=off’;

set optimizer_switch = ’loosescan=off’;

set optimizer_switch = ’materialization=off’;

 Force traditional IN-to-EXIST evaluation:

set optimizer_switch = ’semijoin=off,materialization=off’;

Usage

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 24

MySQL 5.6: Index Condition Pushdown (ICP)

select sum(l_extendedprice * l_discount) as revenue

from lineitem force index(j_l_shipdate_discount_quantity)

where l_shipdate >= '1994-01-01'

 and l_shipdate < date_add('1994-01-01’,interval '1' year)

 and l_discount between 0.09 - 0.01 and 0.09 + 0.01

 and l_quantity < 24;

DBT3 Query 6: Forecasting Revenue Change Query

Need force index to get ICP for this query

Index range scan criteria
Conditions evaluated during index scan

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 25

DBT-3, Query 6
Scale 10 (23 GB)

innodb_buffer_pool_size= 24 GB
(CPU-bound)

optimizer_switch settings:
index_condition_pushdown = on/off

MySQL 5.6: Index Condition Pushdown

0

5

10

15

20

25

30

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

Table Scan

Index Scan
(ICP off)

Index Scan
(ICP on)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 26

Index Condition Pushdown

mysql> explain select sum(l_extendedprice * l_discount) as revenue from

lineitem force index (i_l_shipdate_discount_quantity) where l_shipdate >=

'1994-01-01' and l_shipdate < date_add('1994-01-01' , interval '1' year)

and l_discount between 0.09 - 0.01 and 0.09 + 0.01 and l_quantity < 2\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: lineitem

 type: range

possible_keys: i_l_shipdate_discount_quantity

 key: i_l_shipdate_discount_quantity

 key_len: 16

 ref: NULL

 rows: 18940908

 Extra: Using index condition

1 row in set (0.00 sec)

EXPLAIN

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 27

Index Condition Pushdown

mysql> explain FORMAT=JSON select sum(l_extendedprice * l_discount) as
revenue from lineitem force index (i_l_shipdate_discount_quantity) where
l_shipdate >= '1994-01-01' and l_shipdate < date_add('1994-01-01' ,
interval '1' year) and l_discount between 0.09 - 0.01 and 0.09 + 0.01 and
l_quantity < 24;

| {

 "query_block": {

 "select_id": 1,

 "table": {

 "table_name": "lineitem",

 "access_type": "range",

 ...

 "filtered": 100,

 "index_condition": "((`dbt3`.`lineitem`.`l_shipDATE` >= '1994-01-01')
and (`dbt3`.`lineitem`.`l_shipDATE` < ('1994-01-01' + interval '1' year))
and (`dbt3`.`lineitem`.`l_discount` between (0.09 - 0.01) and (0.09 +
0.01)) and (`dbt3`.`lineitem`.`l_quantity` < 24))"

 }

EXPLAIN FORMAT=JSON

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 28

 ORDER BY with LIMIT optimization

 Delayed Materialization of Derived Tables

 Extended secondary keys (InnoDB)

 Reduced optimization time for large IN-lists

 Reduced optimization time for many-table joins

 Reduced space usage for large temporary tables with VARCHAR

 Speed-up of information schema queries

 EXPLAIN for INSERT, UPDATE, DELETE

 Structured EXPLAIN (JSON format)

 Optimizer trace

MySQL 5.6:
More Optimizer Improvements

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 29

 My blog:

– http://oysteing.blogspot.com/

 Optimizer team blog:

– http://mysqloptimizerteam.blogspot.com/

 What’s new in MySQL 5.6:

– http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html

More information

http://oysteing.blogspot.com/
http://mysqloptimizerteam.blogspot.com/
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html
http://dev.mysql.com/tech-resources/articles/whats-new-in-mysql-5.6.html

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 30

The preceding is intended to outline our general product direction. It is

intended for information purposes only, and may not be incorporated

into any contract. It is not a commitment to deliver any material, code,

or functionality, and should not be relied upon in making purchasing

decisions. The development, release, and timing of any features or

functionality described for Oracle’s products remains at the sole

discretion of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 31

Q&A

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 32

