
Modern CMake
Open Source Tools to Build Test and Deploy C++ Software

Bill Hoffman
bill.hoffman@kitware.com
Alexander Neundorf
neundorf@kde.org

CMake

CDash

ParaView

• Built for the Insight Segmentation and Registration Toolkit (ITK)
http://www.itk.org

• Funded by National Library of Medicine (NLM): part of the Visible
Human Project

• CMake
 Release-1-0 branch created in late 2001
• Change the way “everyone” builds c++.

CMake: History

http://www.itk.org/

Why CMake? It’s easy, and works well

5

Typical Project without CMake (curl)

$ ls
CHANGES RELEASE-NOTES curl-config.in missing
CMake acinclude.m4 curl-style.el mkinstalldirs
CMakeLists.txt aclocal.m4 depcomp notes
build docs notes~
COPYING buildconf include packages
CVS buildconf.bat install-sh reconf
ChangeLog compile lib sample.emacs
Makefile config.guess libcurl.pc.in src
Makefile.am config.sub ltmain.sh tests
Makefile.in configure m4 vc6curl.dsw
README configure.ac maketgz

$ ls src/
CMakeLists.txt Makefile.riscos curlsrc.dsp hugehelp.h version.h
CVS Makefile.vc6 curlsrc.dsw macos writeenv.c
Makefile.Watcom Makefile.vc8 curlutil.c main.c writeenv.h
Makefile.am config-amigaos.h curlutil.h makefile.amiga writeout.c
Makefile.b32 config-mac.h getpass.c makefile.dj writeout.h
Makefile.in config-riscos.h getpass.h mkhelp.pl
Makefile.inc config-win32.h homedir.c setup.h
Makefile.m32 config.h.in homedir.h urlglob.c
Makefile.netware curl.rc hugehelp.c urlglob.h

• A build system
that just works

• A build system

that is easy to
use cross
platform

Why CMake? It’s fast
http://blog.qgis.org/?q=node/16 : “I was quite surprised with

the speed of building Quantum GIS codebase in
comparison to Autotools. “

 Task CMake Autotools
Configure 0:08 Automake: 0:41

Configure: 0:20
Make 12:15 21:16
Install 0:20 0:36
Total 12:43 22:43

http://taskwarrior.org/projects/taskwarrior/n
ews

Why CMake? Everyone is using it

• Google Search Trends and ohloh comparisons with auto*
• 1400+ downloads per day from www.cmake.org
• Major Linux distributions and Cygwin provide CMake packages
• KDE, Second Life, Boost (Expermentally), many others

KDE 2006 – Tipping Point!

Why CMake? Quickly adapt to new
technologies
• New build IDE’s and compilers

– Visual Studio releases supported weeks after beta
comes out

– Xcode releases supported weeks after beta comes
out

– ninja (command line build tool from google) support
contributed to CMake as ninja matured

• New compiler support
– clang
– gcc versions

How CMake Changes The Way We Build C++

• Boost aims to give C++ a set of useful libraries
like Java, Python, and C#

• CMake aims to give C++ compile portability like
the compile once and run everywhere of Java,
Python, and C#
– Same build tool and files for all platforms
– Easy to mix both large and small libraries

• Commands may be uppercase or
lowercase

ADD_EXECUTABLE(Tutorial tutorial.cxx)
is equivalent to

add_executable(Tutorial tutorial.cxx)

• No need to repeat variables
– endforeach(MYVAR),
 endif(THIS AND THAT OR
 THEOTHER),
 endmacro(DoReallyCoolStuff),
 endfunction(DoBetterStuff)
– endforeach(), endif(), endmacro(),

endfunction()

CMake is no longer SCREAM MAKE

CMake Features - continued
• Automatic analysis

– Implicit dependencies (C, C++, Fortran)
– Transitive link dependencies
– Ordering of linker search path and RPATH

• Advanced Makefile generation
– Modular, Fast, Parallel
– Color and progress display
– Help targets – make help
– Preprocessor targets – make foo.i
– Assembly targets – make foo.s

CMake Scripts

• cmake –E command
– Cross platform command line utility
– Ex. Copy file, Remove file, Compare and

conditionally copy, time etc
• cmake –P script.cmake

– Cross platform scripting utility
– Does not generate cmake_cache
– Ignores commands specific to generating

build environment

ExternalProject_add
• Module introduced in CMake 2.8

– Allows the download, configure,
build and install of software via
custom commands

• Kitware Source Article: October
2009
– http://www.kitware.com/products/ht

ml/BuildingExternalProjectsWithCM
ake2.8.html

• ARL CSE

Titan

VTK Qt Trilinos Curl CLAPCK
Google

Protocol
buffers

Boost

Testing with CMake, CTest and CDash

• Testing command in CMake
– add_test (testname exename arg1 arg2 arg3 …)
– Executable is expected to return 0 for passed
– Can set other test passing conditions based on output

matching.

• ctest – an executable that is distributed with
cmake that can run tests in a project.
– Used for continuous integration testing
– Client for CDash
– Can be use for both CMake based projects and other

build systems

CDash Dashboard www.cdash.org

CPack
• CPack is bundled with CMake

• Creates professional platform specific installers
– TGZ and Self extract TGZ (STGZ), NullSoft Scriptable Install

System (NSIS), OSX PackageMaker, RPM, Deb

Simple Qt Example

cmake_minimum_required(VERSION 2.8)
project(helloQt)
find required dependencies
find_package(Qt4 REQUIRED)
create the executable
add_executable(helloQt WIN32 MACOSX_BUNDLE myqt.cxx)
target_link_libraries(helloQt ${QT_QTMAIN_LIBRARY} ${QT_LIBRARIES})
installation and packaging
install(TARGETS helloQt DESTINATION bin)
include (InstallRequiredSystemLibraries)
set (CPACK_PACKAGE_VERSION_MAJOR "1")
set (CPACK_PACKAGE_VERSION_MINOR "0")
set(CPACK_PACKAGE_EXECUTABLES "helloQt" "Hello Qt")
include (CPack)

Simple Qt Example with Boost

cmake_minimum_required(VERSION 2.8)
project(helloQt)
find required dependencies
find_package(Qt4 REQUIRED)
include(${QT_USE_FILE})
set(Boost_USE_STATIC_LIBS ON)
find_package(Boost REQUIRED signals)
include_directories(${Boost_INCLUDE_DIRS})
create the executable
add_executable(helloQt WIN32 MACOSX_BUNDLE myqt.cxx)
target_link_libraries(helloQt ${QT_QTMAIN_LIBRARY} ${QT_LIBRARIES}
 ${Boost_LIBRARIES})
installation and packaging
install(TARGETS helloQt DESTINATION bin)
include (InstallRequiredSystemLibraries)
set (CPACK_PACKAGE_VERSION_MAJOR "1")
set (CPACK_PACKAGE_VERSION_MINOR "0")
set(CPACK_PACKAGE_EXECUTABLES "helloQt" "Hello Qt")
include (CPack)

Finding and using software

• targets with includes and links
• import/export targets
• Alex will talk about

	Modern CMake
	Slide Number 2
	Slide Number 3
	CMake: History
	Why CMake? It’s easy, and works well
	Why CMake? It’s fast
	Why CMake? Everyone is using it
	Why CMake? Quickly adapt to new technologies
	How CMake Changes The Way We Build C++
	CMake is no longer SCREAM MAKE
	CMake Features - continued
	CMake Scripts
	ExternalProject_add
	Testing with CMake, CTest and CDash
	CDash Dashboard www.cdash.org
	CPack
	Simple Qt Example
	Simple Qt Example with Boost
	Finding and using software

