
Modern CMake 
Open Source Tools to Build Test and Deploy C++ Software 

Bill Hoffman  
bill.hoffman@kitware.com 
Alexander Neundorf 
neundorf@kde.org 
 



CMake 

CDash 

ParaView 





• Built for the Insight Segmentation and Registration Toolkit (ITK) 
http://www.itk.org 

• Funded by National Library of Medicine (NLM): part of the Visible 
Human Project 

• CMake  
     Release-1-0 branch created in late 2001 
• Change the way “everyone” builds c++. 
 

 

CMake: History  

http://www.itk.org/


Why CMake? It’s easy, and works well 

5 

Typical Project without CMake (curl) 
 
$ ls  
CHANGES                RELEASE-NOTES  curl-config.in  missing 
CMake                  acinclude.m4   curl-style.el   mkinstalldirs 
CMakeLists.txt         aclocal.m4     depcomp         notes 
build          docs            notes~ 
COPYING                buildconf      include         packages 
CVS                    buildconf.bat  install-sh      reconf 
ChangeLog              compile        lib             sample.emacs 
Makefile               config.guess   libcurl.pc.in   src 
Makefile.am            config.sub     ltmain.sh       tests 
Makefile.in            configure      m4              vc6curl.dsw 
README                 configure.ac   maketgz 
 
$ ls src/ 
CMakeLists.txt    Makefile.riscos   curlsrc.dsp  hugehelp.h      version.h 
CVS               Makefile.vc6      curlsrc.dsw  macos           writeenv.c 
Makefile.Watcom   Makefile.vc8      curlutil.c   main.c          writeenv.h 
Makefile.am       config-amigaos.h  curlutil.h   makefile.amiga  writeout.c 
Makefile.b32      config-mac.h      getpass.c    makefile.dj     writeout.h 
Makefile.in       config-riscos.h   getpass.h    mkhelp.pl 
Makefile.inc      config-win32.h    homedir.c    setup.h 
Makefile.m32      config.h.in       homedir.h    urlglob.c 
Makefile.netware  curl.rc           hugehelp.c   urlglob.h 

• A build system 
that just works 

 
• A build system 

that is easy to 
use cross 
platform 

 
 



Why CMake? It’s fast 
http://blog.qgis.org/?q=node/16 : “I was quite surprised with 

the speed of building Quantum GIS codebase in 
comparison to Autotools. “ 

 Task CMake Autotools 
Configure 0:08 Automake: 0:41 

Configure: 0:20 
Make 12:15 21:16 
Install 0:20 0:36 
Total 12:43 22:43 

http://taskwarrior.org/projects/taskwarrior/n
ews 



Why CMake? Everyone is using it 

• Google Search Trends and ohloh comparisons with auto*  
• 1400+ downloads per day from www.cmake.org 
• Major Linux distributions and Cygwin provide CMake packages 
• KDE, Second Life, Boost (Expermentally), many others 
 

KDE 2006 – Tipping Point! 



Why CMake? Quickly adapt to new 
technologies 
• New build IDE’s and compilers 

– Visual Studio releases supported weeks after beta 
comes out 

– Xcode releases supported weeks after beta comes 
out 

– ninja (command line build tool from google) support 
contributed to CMake as ninja matured 

• New compiler support 
– clang 
– gcc versions 

 



How CMake Changes The Way We Build C++  

• Boost aims to give C++ a set of useful libraries 
like Java, Python, and C# 

• CMake aims to give C++ compile portability like 
the compile once and run everywhere of Java, 
Python, and C# 
– Same build tool and files for all platforms 
– Easy to mix both large and small libraries 

 



• Commands may be uppercase or 
lowercase 

ADD_EXECUTABLE(Tutorial tutorial.cxx) 
is equivalent to 

add_executable(Tutorial tutorial.cxx) 
 

• No need to repeat variables  
– endforeach(MYVAR),  
    endif(THIS AND THAT OR   
    THEOTHER), 
    endmacro(DoReallyCoolStuff), 
    endfunction(DoBetterStuff)  
– endforeach(), endif(), endmacro(), 

endfunction() 
 
 

CMake is no longer SCREAM MAKE 



CMake Features - continued 
• Automatic analysis 

– Implicit dependencies (C, C++, Fortran) 
– Transitive link dependencies 
– Ordering of linker search path and RPATH 

• Advanced Makefile generation 
– Modular, Fast, Parallel 
– Color and progress display 
– Help targets – make help 
– Preprocessor targets – make foo.i 
– Assembly targets – make foo.s 

 



CMake Scripts 

• cmake –E command 
– Cross platform command line utility 
– Ex. Copy file, Remove file, Compare and 

conditionally copy, time etc 
• cmake –P script.cmake 

– Cross platform scripting utility 
– Does not generate cmake_cache 
– Ignores commands specific to generating 

build environment 
 
 



ExternalProject_add 
• Module introduced in CMake 2.8 

– Allows the download, configure, 
build and install of software via 
custom commands 

• Kitware Source Article: October 
2009 
– http://www.kitware.com/products/ht

ml/BuildingExternalProjectsWithCM
ake2.8.html 

• ARL CSE  
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Testing with CMake, CTest and CDash  

• Testing command in CMake 
– add_test ( testname exename arg1 arg2 arg3 …) 
– Executable is expected to return 0 for passed 
– Can set other test passing conditions based on output 

matching.  

• ctest – an executable that is distributed with 
cmake that can run tests in a project. 
– Used for continuous integration testing 
– Client for CDash 
– Can be use for both CMake based projects and other 

build systems 

 



CDash Dashboard  www.cdash.org 



CPack 
• CPack is bundled with CMake 

• Creates professional platform specific installers 
– TGZ and Self extract TGZ (STGZ), NullSoft Scriptable Install 

System (NSIS), OSX PackageMaker, RPM, Deb  

 



Simple Qt Example 
 
cmake_minimum_required(VERSION 2.8) 
project(helloQt) 
# find required dependencies  
find_package(Qt4 REQUIRED)  
# create the executable 
add_executable(helloQt WIN32 MACOSX_BUNDLE myqt.cxx ) 
target_link_libraries(helloQt ${QT_QTMAIN_LIBRARY} ${QT_LIBRARIES}) 
# installation and packaging 
install(TARGETS helloQt DESTINATION bin) 
include (InstallRequiredSystemLibraries) 
set (CPACK_PACKAGE_VERSION_MAJOR "1") 
set (CPACK_PACKAGE_VERSION_MINOR "0") 
set(CPACK_PACKAGE_EXECUTABLES "helloQt" "Hello Qt") 
include (CPack) 

 



Simple Qt Example with Boost 
 
cmake_minimum_required(VERSION 2.8) 
project(helloQt) 
# find required dependencies  
find_package(Qt4 REQUIRED)  
include(${QT_USE_FILE}) 
set( Boost_USE_STATIC_LIBS ON ) 
find_package(Boost REQUIRED signals) 
include_directories(${Boost_INCLUDE_DIRS}) 
# create the executable 
add_executable(helloQt WIN32 MACOSX_BUNDLE myqt.cxx ) 
target_link_libraries(helloQt ${QT_QTMAIN_LIBRARY} ${QT_LIBRARIES} 
  ${Boost_LIBRARIES}   ) 
# installation and packaging 
install(TARGETS helloQt DESTINATION bin) 
include (InstallRequiredSystemLibraries) 
set (CPACK_PACKAGE_VERSION_MAJOR "1") 
set (CPACK_PACKAGE_VERSION_MINOR "0") 
set(CPACK_PACKAGE_EXECUTABLES "helloQt" "Hello Qt") 
include (CPack) 

 



Finding and using software 

• targets with includes and links 
• import/export targets 
• Alex will talk about  
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