Go on NetBSD

A modern systems programming language
2 February 2013

Benny Siegert
Google Switzerland; The NetBSD Foundation

Agenda

e Whatis Go?

¢ Building Go code with the go tool
¢ Running Go code

e pkgsrc

e Conclusion

What is Go?

A modern systems programming language
Initially developed at Google, open source since 2009.
Initial implementation by Rob Pike, Robert Griesemer, Russ Cox, Ken Thompson.

e compiled

e mostly statically typed

e garbage collected

e provides control over memory layout

e provides access to C APIs (via cgo) and syscalls

Go has powerful concurrency primitives.

Go is:
Simple: concepts are easy to understand

¢ (the implementation might still be sophisticated)
Orthogonal: concepts mix clearly

e easy to understand and predict what happens
Succinct: no need to predeclare every intention
Safe: misbehavior should be detected
These combine to give expressiveness.

(Source: R. Pike, The Expressiveness of Go (2010),
http/ / tal kS gO | an g (@) I’g/ 201 O/ EXp re SS|Ve N ESSOfG 0'201 O pdf(http//taIks.golang.org/zm 0/ExpressivenessOfGo-201 O.pdf))

http://talks.golang.org/2010/ExpressivenessOfGo-2010.pdf

Clean

The language is defined by a short and readable specification. Read it.
¢ implemented by two compilers: gc and gccgo (gec frontend).

The APIs in the standard library are well thought out,
contrary to the "bureaucracy" of C++ or Java:

foo::Foo *myFoo = new foo::Foo(foo::FOO_INIT)
e putin the original Foo was a longer word
The standard library has "batteries included".

The code has a standard formatting, enforced by gofmt.
No more discussions about braces and indentation!

Hello World

package main
import "fmt"

func main() {
fmt.Println("Hello World!")
} Run

All code lives in a package (package main is a command).
Semicolons are inserted automatically.
e Opening brace for functions must go on the same line.

Strings are UTF-8, built-in string data type.

Another Hello World

package main

import (
llflagll
llfmtll
"net/http"

)

var addr *string = flag.String("addr", ":8080", "host:port to listen on")

func main() {
flag.Parse()

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello World!™)

)

http.ListenAndServe(*addr, nil)
} Run

net/http is not a toy web server! It powers e.g. dl.google.com.

Basic data structures: slices and maps

Slices are a form of dynamic arrays.

a :
b :

[1int{1, 2, 3, 4} // len(a) = 4, cap(a) = 4
a[2:4] // b[0] =3, b[1] = 4

b = append(b, 5) // b[2] =5

b[3] // out-of-bounds access Run

Strings are immutable; they can be converted to [Jbyte or []rune.

Type-safe hashtables (maps) are built-in.

translations := make(map[string]string)
translations["Hello"] = "Bonjour"

Object orientation

Objects in Go do not work like they do in C++,
No inheritance, no polymorphy.

They are more similar to objects in Perl 5.
You start from a basic type (struct, int, string, ...) and add methods.

package foo
type Number int

func (n Number) Square() Number {
return n * n

}

Methods have a receiver before the name (often a pointer).

Table-driven testing

package foo
import "testing"

var squareTests = []struct {
num, square Number

H
{1, 1},
{2, 4},
{256, 65536},
{-10, 100},
}
func TestSquare(t *testing.T) {
for _, test := range squareTests {
actual := test.num.Square()
if actual != test.square {

t.Errorf("Square() of %v: got %v, want %v",
test.num, actual, test.square)

Table-driven tests (2)

Here is the test run:

$ go test

PASS

ok github.com/bsiegert/talks/go-netbsd/object 0.004s
If | deliberately insert a mistake:

$ go test

--- FAIL: TestSquare (0.00 seconds)

object_test.go:21: Square() of -10: got 100, want -100
FAIL

exit status 1

FAIL github.com/bsiegert/talks/go-netbsd/object 0.004s

Finally, useful diagnostics!

Interfaces

Interfaces work on methods, not on data.

type Reader interface {
Read(p []byte) (n int, err error)

}

type Writer interface {
Write(p []lbyte) (n int, err error)

}

type ReadWriter interface {
Reader
Writer

Any type that implements these methods fulfills the interface implicitly
(i.e. no "implements" declarations).

Use the interface instead of a concrete type, e.g. in a function:

func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error)

Concurrency: goroutines

A goroutine is a sort of lightweight thread. It runs in the same address space,
concurrently and independent from the other goroutines.

f("Hello World") // f runs; we wait

go f("Hello World") // execution continues while f is running

They are much cheaper than threads, you can have thousands of them.

If one goroutine blocks (e.g. on I/0), the others continue to run.
This is easier to reason about than I/0 with callbacks, as in node.js.

Maximum number of goroutines running in parallel is configurable
(e.g. one per core).

Concurrency: channels
Channels are type-safe "pipes" to transfer data between goroutines.
"Don't communicate by sharing memory -- share memory by communicating."

They are also a synchronization point.

timer := make(chan bool)

go func() {
time.Sleep(deltaT)
timer <- true

4@

// Do something else; when ready, receive.
// Receive will block until timer delivers.
<-timer

Easily implement worker pools, parallelize computations, etc.

More information: R. Pike, "Concurrency is not parallelism",
http://talks.golang.org/2012/waza.slide nupsraksgoangorgz012mazasice.

http://talks.golang.org/2012/waza.slide

"Self-documenting" code: godoc

godoc extracts and generates documentation for Go programes,
using comments in the source code.

// Package strings implements simple functions to manipulate strings.
package strings

// Count counts the number of non-overlapping instances of sep in s.
func Count(s, sep string) int {

/7 ..
Iy

http://golang.orguumemzon runs godoc on Google App Engine.
godoc -http=:6060 runs the server locally.
godoc foo shows the documentation on the console (similar to a manpage).

Commands often have a doc.go containing only documentation.

http://golang.org/

Building Code With the go Tool

GOROOT and GOPATH

The default build tool is called go. It uses $GOROOT and $GOPATH.

e GOROOT contains the standard Go tree (source + compiled form).

e GOPATH is a colon-separated list of "user paths". It must be set by the developer.

Even after building, the source code is needed for godoc and for building dependent
packages.

GOPATH example
GOPATH=/home/user/gocode

/home/user/gocode/
src/
myproject/
foo/ (go code in package foo)
X.g0
server/ (go code in package main)
y.g0
bin/
server (installed command)
pkg/
netbsd_amd64/
myproject/
foo.a (installed package object)

Conventions for remote repos

import (
"code.google.com/p/go.image/tiff"
"github.com/mattn/go-gtk"
"launchpad.net/goamz/ec2"

)

Import path == URL (more or less). Supports free hosters and custom remote
repositories.

go get github.com/user/repo/package installs these dependencies
(if you have git, hg, bzr installed).

e fetch, build, install

e supports recursive fetching of dependencies

Running Go code

A word on compilers
The gc suite is the most often used compiler suite. It compiles insanely fast.

e supportsi386, amd64, arm
¢ Linux, FreeBSD, OpenBSD, NetBSD, Windows

e easy to cross-compile for other platforms
gccgo is a Go frontend for gec, included in gcc 4.7 .x.

e supports all platforms gcc supports
e petter optimizations
e may not have the latest standard libraries

e has fewer users

Go packages

All Go code lives in a package.
Compiling a package main produces an executable binary.

Other packages are compiled to static libraries (.a files).

e contain code and the exported interface
e contain all dependencies

e .afiles from different compilers (and different compiler versions) are incompatible.

Running a server written in Go

Currently, Go programs cannot daemonize, so they run in the foreground.
e thisis harder than it looks

My suggestion: run it under daemontools

¢ |og on stdout, collect logs with multilog

Daemontools example: continuous builder

/service/builder/run contains:;

#!/bin/sh

exec 2>&1
exec setuidgid builder envdir env /service/builder/builder -commit netbsd-amd64-bsiegert

/service/builder/env/HOME contains:;

/home/builder

/service/builder/log/run contains:

#!/bin/sh
exec setuidgid buildlog multilog ./main

Just copy the executable to /service/builder/builder, done!

pkgsrc

wip/go

Go is available in pkgsrc-wip aswip/go.

It installs source + binaries to $PREFIX/go.
The package supports

e NetBSD

e Linux

e OpenBSD (untested)

e Mac OS X (currently broken)

on i386 and x86_64.

NetBSD support is not in a stable release yet. (Go 1.1 will have it.)

pkgsrc and software written in Go
Two cases: libraries and executables.
Executables are easy, as they are statically linked.

e may link dynamically against C libraries
e no runtime dependencies to Go libs

e need source (or part of it) for godoc
Libraries?

e have to be recompiled each time you upgrade the Go compiler
e why not make source-only packages and compile during postinstall?

e how to support building with gccgo?

need to design a go/package . mk.

Conclusion

Conclusion

Try Go!
It does not look very revolutionary on first glance, but it is addictive.

Try Go on NetBSD.

Try wip/go and report any problems,

Thank you

Benny Siegert

Google Switzerland; The NetBSD Foundation
mailto:bsiegert@google.com maitabsiegert@googie.com
mailto:bsiegert@netbsd.orgmaitobsigerenetsdorg)

http//WWW m | I’bSd .0 I’g/W| 08'1 O htm (http:/Aww.mirbsd.org/wlog-10.htm)

mailto:bsiegert@google.com
mailto:bsiegert@netbsd.org
http://www.mirbsd.org/wlog-10.htm

