A Full-Featured Framework for Image Processing

David Tschumperlé
Image Team, GREYC / CNRS (UMR 6072), Caen / France

FOSDEM’2013, Brussels/Belgium, February 2013
(Public) Research on Image Processing, at the GREYC lab of the ENSICAEN / CNRS / University of Caen.

⇒ We are trying to design (innovative) algorithms to solve problems related to image processing (image denoising, enhancement, segmentation, features detection, ...).
Frequent collaborations with companies / laboratories having specific image data to process.

⇒ Various image data coming from very different sources.
Types of images to process are diverse: 2D, 2D+t, 3D, 3D+t, float-valued, hyperspectral or even matrix-valued pixels/voxels. ⇒ Sometimes, we stray far from just 2D color pictures!

(a) $I_1: W \times H \rightarrow [0, 255]^3$
(b) $I_2: W \times H \times D \rightarrow [0, 65535]^{32}$
(c) $I_3: W \times H \times T \rightarrow [0, 4095]$
(d) $I_4: W \times H \times T \rightarrow [0, 4095]$
Needs for specific tools to visualize / explore data, convert image formats, apply classical IP operators (filtering, geometric transformations, frequency analysis, ...) for very generic images types, sometimes on several gigabytes of image data.

Typical question heard at the lab: “How may I easily convolve 3d volumetric images with 32 channels, by an anisotropic gaussian kernel?”
Very few existing open-source tools for these kind of tasks. They tend to be aither:

- Easy to use, but not generic enough for our data (ImageMagick, GraphicsMagick, ...).
- Or very flexible, but reserved for savvy programmers (requires the writing of code, using “complex” external libraries).

We did like others: Since 1999, we have been developing a C++ library for generic image processing.

http://cimg.sourceforge.net
Motivations

Climg is a C++ library which is:

- **Simplicity**: Easy to install and to manipulate.
- **Genericity**: Generic enough to be able to process a wide variety of image types (2D, 3D, 3D+t, hyperspectral, float-valued, ...).
 (template-based)
- **Usefulness**: Provide usual algorithms encountered in the Signal and Image Processing fields.
- **Extensibility**: Extensible by nature.
- **Portability**: Portable on several OS and architectures.
- **Freedom**: Distributed under an open-source license.
 (CeCILL-C)
Motivations

- So, problem solved? No! ⇒ People are also generic! 😊
- The world of image processing research consists of people with very different profiles:
 - Mathematicians
 - Physicists
 - Geeks
 - Biologists ...

⇒ Providing a C++ library for Image Processing is still too restrictive to reach / help most of these people!
Goals of the G’MIC project

Goals :

G’MIC aims at providing several user interfaces to easily access the image processing features of the CImg Library.

Those different interfaces are more or less user-friendly (and powerful) and aim at different audiences.

Technical means :

G’MIC defines a whole script language, specifically designed to build complex image processing pipelines in a concise way (G’MIC language), used as a basis layer in all proposed user interfaces.
Goals of the G’MIC project

1. Definition of a script language designed to build complex image processing pipelines (*G’MIC* language).

 - **Full-featured:** More than 750 commands available (to date) for image visualization, filtering, geometry / color management, features extraction, 3d rendering, matrix computations, graphical plots, ...

 → Current documentation (.pdf) has more than 300 pages.
Goals of the G’MIC project

1. Definition of a script language designed to build complex image processing pipelines ($G’MIC$ language).
 - **Conciseness:** The G’MIC language has been designed specifically for being concise. This is an interpreted language, which can be extended by custom user-defined functions (generally short).

 \rightarrow Primary target of use was the command line.
2. Provide an **open-source implementation** of the G’MIC language interpreter (as a C++ library).

- **Integrations**: Third-party softwares can easily get all *G’MIC* features (interesting for image retouching or painting softwares, ...).

- **Free software**: The G’MIC interpreter is distributed under the CeCILL license (GPL-compatible).

→ Very few “external” integration have been done yet:
 * **EKD**, video editing software.
 * **Planned**: *Krita* (plug-in), painting software.
 * **Planned**: *Delaboratory*, RAW photograph postprocessing application.
3. Providing **easy-to-use user interfaces** (also multi-platform), embedding the **G'MIC** language interpreter.

- **gmic**: Tool to manipulate generic image data from **from the command line (CLI)**. Competitor to the CLI tools of the **ImageMagick / GraphicsMagick** projects.
Example of use for 'gmic'

gmic lena.bmp -blur 3 -sharpen 1000 -noise 30 + "'cos(x/3)*30'"
Example of use for 'gmic'

gmic reference.inr -flood 23,53,30,50,1,1,1000 -flood[-2]
0,0,0,30,1,1,1000 -blur 1 -isosurface3d 900 -opacity3d[-2] 0.2
-color3d[-1] 255,128,0 --+3d
Example of use for 'gmic'

gmic milla.bmp -f ‘255*(i/255)^1.7’ -histogram 128,0,255 -a c -plot

is the G'MIC equivalent to this C++ code (using CImg):

```cpp
#include "CImg.h"
using namespace cimg_library;
int main(int argc,char**argv) {
    const CImg<> img("milla.bmp"),
    hist = img.get_histogram(128,0,255),
    img2 = img.get_fill("255*((i/255)^1.7)",true),
    hist2 = img2.get_histogram(128,0,255);
    (hist,hist2).get_append('c').display_graph("Histograms");
    return 0;
}
```
A G'MIC-written pipeline can be added as a new G’MIC command.

Writing pipelines also allows creation of nice artistic filters!

gmic lena.jpg -pencilbw 0.3 -o gmic_lena1.jpg; gmic lena.jpg -cubism 160 -o gmic_lena3.jpg
gmic lena.jpg -flower 10 -o gmic_lena4.jpg; gmic lena.jpg -stencibw 30 -o gmic_lena2.jpg
3. Providing **easy-to-use user interfaces** (also multi-platform), embedding the **G'MIC** language interpreter.

- **gmic_gimp** : Plug-in for GIMP provides hundreds of image filters on 2D RGB or RGBA images.
3. Providing **easy-to-use user interfaces** (also multi-platform), embedding the **G’MIC** language interpreter.

- **G’MIC Online**: Web service for manipulating images online (similar to the GIMP plug-in, but running on a web browser). https://gmicol.greyc.fr
3. Providing **easy-to-use user interfaces** (also multi-platform), embedding the *G’MIC* language interpreter.

- **ZArt** : A QT-based interface for manipulating images acquired from the webcam (used as a demonstration platform).
Overview of the G’MIC project

- **gmic (C++)**
- **gmicol (web service)**
- **ZArt (webcam GUI)**
- **gmic_gimp (plug-in GIMP)**
- **libgmic (C++)**
- **Clmg (C++ library)**
- **Custom commands (G’MIC script)**
Today, the G’MIC project has:

- A little less than 100,000 lignes de code (mainly in C++ and G’MIC languages).
- 250-350 downloads / day (+ than 700,000 since July 2008).
- 350-400 unique visitors / day on the project web page.

⇒ Very satisfactory statistics regarding the focused audience...
⇒ Digital artists have also invested in the project!
Major evolution step

- Sources/binaries of the GIMP plug-in, have been made available in January 2009.

⇒ Made a big difference in the number of downloads a day.
What main features interest people?

Some features that have gained G’MIC attention:

1. One of the few open-source software to propose an efficient image denoising algorithm:
What main features interest people?

Some features that have gained G’MIC attention:

1. One of the few open-source software to propose an efficient image denoising algorithm:
What main features interest people?

Some features that have gained G’MIC attention:

2. One of the few open-source software to propose an **image inpainting** algorithm:
What main features interest people?

Some features that have gained G’MIC attention:

2. One of the few open-source software to propose an image inpainting algorithm:
What main features interest people?

- Some features that have gained G’MIC attention:
 2. One of the few open-source software to propose an image inpainting algorithm:
What main features interest people?

Some features that have gained G’MIC attention:

2. One of the few open-source software to propose an image inpainting algorithm:
Some features that have gained G’MIC attention:

2. One of the few open-source software to propose an **image inpainting** algorithm, here for B&W image recolorization using color patches:

(Courtesy of Akros/GimpChat)
What main features interest people?

Some features that have gained G’MIC attention:

3. ’Fractalius’-like effect (39$ plug-in for Photoshop), reproduced with G’MIC ’Rodilius’ (→ 0$, 10 lines of G’MIC code !):

Redfield Fractalius

G’MIC Rodilius
Rodilius:

```
rodilius:
-v -repeat @# -l[$]> -split_opacity -rv
-if {!$6} -negative[-1] -endif
--f[-1] @0 -nm[-1] @[-2,n]
-repeat {round($4)}
  angle={$5+$}*180/round($4)}
  --blur_linear[-2] $1%,{$1*$2/100},$angle,1 -b[-1] 0.7 -sharpen[-1] $3 -max[-2,-1]
-done -rm[-2]
-if {!$6} -negative[-1] -endif
-rv -a c -endl -done -v +
```
What main features interest people?

Some features that have gained G’MIC attention:

4. Original ‘Sketch’ effect, available in G’MIC.

(Courtesy of Tom Keil)
Sketch results

(Courtesy of Tom Keil)
Sketch results
Sketch results

(Courtesy of Tom Keil)
G’MIC defines a lot of ways to play with images of any types.

G’MIC is a generic framework with several different interfaces.

⇒ Go try it ! 😊

Thanks for listening!

Any questions are welcome...