ARM support in the
Linux kernel

Thomas Petazzoni
Free Electrons
thomas. petazzoni@free-electrons.com

» Embedded Linux engineer and trainer at Free Electrons since
2008

» Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

» Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

» http://free-electrons.com

» Contributing the kernel support for the new Armada 370
and Armada XP ARM SoCs from Marvell, under contract

with Marvell.

» Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

» Living in Toulouse, south west of France

http://free-electrons.com

v

Background on the ARM architecture and Linux support
The problems

v Vv

Changes in the ARM kernel support

v

Getting the support for a SoC in mainline, story of Armada
370/XP

ARM Architecture ARM Core System-on-chip Board

Defines the instruction set, Is a specific implementation of Integrates the ARM core Integrates the SoC
interface with the MMU, a given ARM architecture. with a number of on a PCB with other
interrupts, etc. peripherals around it. components around it.
Delivered in the form of a netlist or
Itis just a specification. Verilog code to licensees. Done by silicon vendors, Done by board and
sold in the form system makers.
of a chip.

ARM Architecture CPU Core System-on-chip Board

ARM Core

SoC
peripheral

Board
peripheral

» Beyond the ARM core itself, a lot of freedom is left to the
SoC vendor.

> There is no standard for the devices, the management of
clocks, pinmuxing, IRQ controllers, timers, etc.

> Note: some things like IRQ controllers and timers are now
standardized.

> There isn’t a mechanism to enumerate the devices available

inside the SoC. All devices have to be known by the kernel.

» arch/arm/

» arch/arm/{kernel,mm,1lib,boot}/
The core ARM kernel. Contains the code related to the ARM
core itself (MMU, interrupts, caches, etc.). Relatively small
compared to the SoC-specific code.

» arch/arm/mach-<foo>/
The SoC-specific code, and board-specific code, for a given
SoC family.

» arch/arm/mach-<foo>/board-<bar>.c.
The board-specific code.

» drivers/
The device drivers themselves.

» Exploding number of ARM SoC, from different vendors

» The historical maintainer, Russell King, got overflowed by
the amount of code to review.

» Code started to flow directly from sub-architecture
maintainers directly to Linus Torvalds.

» Focus of each sub-architecture teams on their own
problems, no vision of the other sub-architectures.

» Consequences: lot of code duplication, missing common
infrastructures, maintenability problems, etc.

» Linus Torvalds, March 2011: Gaah. Guys, this whole ARM
thing is a f*cking pain in the ass.

» On x86 PC, one can build a single kernel image (with many
modules) that boots and work on all PCs

» Good for distributions: they can ship a single kernel image.

» On ARM, it was impossible to build a single kernel that
would boot on systems using different SoCs.

> Issue for distributions: they have to build and maintain a
kernel image almost for each ARM hardware platform they
want to support.

» Need for ARM multiplatform support in the kernel.

» A new maintainer team for the

ARM sub-architectures: Arnd s forvales
Bergmann (Linaro) and Olof Hﬁ.mm
Johansson (Google) st Sotjanameon

» All the ARM SoC-specific code
goes through them, in a tree called
arm-soc
» They send the changes accumulated in arm-soc to Linus

Torvalds.

Sub-arch 1 Sub-arch 2 Sub-arch 3

» Those maintainers have a cross-SoC view: detection of
things that should be factorized, consistency accross
SoC-specific code.

» Core ARM changes continue to go through Russell King.

» Role of the Linaro consortium

» Most devices inside an ARM SoC and on the board cannot be
dynamically enumerated: they have to be statically
described.

» The old way of doing this description was by using C code,
registering platform_device structures for each hardware
device.

» This has been replaced by a hardware description done in

structure separated from the kernel, called the Device Tree.
» Also used on PowerPC, Microblaze, ARM64, Xtensa,
OpenRisc, etc.

» The Device Tree Source, in text format, gets compiled into a
Device Tree Blob, in binary format, thanks to the Device Tree
Compiler.

» Sources are stored in arch/arm/boot/dts

» At boot time, the kernel parses the Device Tree to instantiate

the available devices.

()

From arch/arm/mach-at91/at91sam9263_devices.c

static struct resource
[0l = {
.start
.end
.flags

.start
.end
.flags

static struct platform_

.name
.id
.dev

3},
.resource

.num_resources

};

some_init_code() {

udc_resources[] = {

AT91SAM9263_BASE_UDP,
AT91SAM9263_BASE_UDP + SZ_16K - 1,
= IORESOURCE_MEM,

= NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,
NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,
IORESOURCE_IRQ,

device at91_udc_device = {
= "at91_udc",
= -1,
=A
.platform_data = &udc_data,

= udc_resources,
= ARRAY_SIZE(udc_resources),

platform_device_register(&at91_udc_device);

¥

()

/include/ "skeleton.dtsi"

VRS

compatib.
model =
interrup
chosen {

};

soc {

le = "brcm,bcm2835";
"BCM2835" ;
t-parent = <&intc>;

bootargs = "earlyprintk console=ttyAMAO";

compatible = "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

ranges = <0x7e000000 0x20000000 0x02000000>;

[...]

intc: interrupt-controller {
compatible = "brcm,bcm2835-armctrl-ic";
reg = <0x7e00b200 0x200>;
interrupt-controller;
#interrupt-cells = <2>;

};

uart@20201000 {

compatible = "brcm,bcm2835-pl011", "arm,plO11", "arm,primecell";

reg = <0x7e201000 0x1000>;
interrupts = <2 25>;
clock-frequency = <3000000>;
status = "disabled";

/dts-v1/;
/memreserve/ 0x0c000000 0x04000000;
/include/ "bcm2835.dtsi"

/A
compatible = "raspberrypi,model-b", "brcm,bcm2835";
model = "Raspberry Pi Model B";
memory {
reg = <0 0x10000000>;
};
soc {
uart@20201000 {
status = "okay";
};
};
};

SoC

armada-370-xp.dtsi

A

armada-370.dtsi

Y

armada-xp.dtsi

armada-370-
mirabox.dts

A
[[]
armada-xp- armada-xp- armada-xp-
mv78230.dtsi mv78260.dtsi mv78460.dtsi
...................... AT
[
armada-xp-
armada-370-db.dts openblocks- armada-xp-db.dts
ax3-4.dts

Old style

New style
(preferred)

New style
(for non-DT
capable
bootloaders)

ulmage

Directly includes platform_device registration
and board details from many boards. Board selected
through machine ID passed by bootloader.

ulmage yourboard.dtb

No longer includes any platform_device registration
or board details. No more machine ID. The kernel simply
parses the DTB to know which devices are there.

ulmage

Same thing, except that the DTB is directly
appended to the kernel image.

L Appended DTB

(CONFIG_ARM_APPENDED_DTB)

» Fits the need of distributions willing to build a single kernel
image that works on many ARM platforms.

» The SoC choice now contains a Allow multiple platforms to
be selected option, and all the SoC families that are
compatible with this can be compiled together in the same
kernel.

» There is still a split between ARMv4/ARMv5 on one side, and
ARMv6/ARMV7 on the other side.

» A lot of changes have been done in the ARM kernel to make
this possible: avoid two different platforms from defining the
same symbol, from using the same header names, no more
#ifdef but runtime detection instead.

» The support for all new SoCs must use the multiplatform
mechanism.

Configuration

GPIOO
GPIO
UART3 RX >

y

UART 3 12co scL
UART3 TX

GPIO1
SPI1 3
—)

MU X m——

A -
12C 0 | 12cospa”

SoC Configuration

Each ARM sub-architecture had its own pin-muxing code
The API was specific to each sub-architecture
A lot of similar functionality implemented in different ways

The pin-muxing had to be done at the SoC level, and couldn’t
be requested by device drivers

v

v

v

v

Device driver

Device driver

Device driver

Request pin muxing

SoC-specific pinctrl driver
drivers/pinctri/pinctri-*.c

pinctrl_ops

Pinctrl subsystem

“—
core

pinmux_ops

pinconf_ops

pinctrl_desc
List pins and pin groups
Control muxing of pins

Control configuration of pins

drivers/pinctrl/{core,devicetree,pinconf,pinmuxf}.c

Provides list of
pin groups

SoC .dtsi file

GPIO driver

drivers/gpio/gpio-*.c

| gpio_chip |

Board .dts file

Provides associations

between pin groups
and devices

irg_chip
]]

v v
GPIO IRQ
subsystem subsystem
core core

drivers/gpio kernel/irq

> In a System-on-Chip, all peripherals are driven by one or more
clocks.

» Those clocks are organized in a tree, and often are software
configurable.

» Since quite some time, the kernel had a simple API: clk_get,
clk_enable, clk_disable, clk_put that were used by
device drivers.

» Each ARM sub-architecture had its own implementation of
this API.

> Does not work for multiplatform kernels.

» Does not allow code sharing, and common mechanisms.

@

» A proper common clock framework has been added in
kernel 3.4, released in May 2012
» This framework:

>

Implements the clk_get, clk_put, clk_prepare,
clk_unprepare, clk_enable, clk_disable, clk_get_rate,
etc. API for usage by device drivers

Implements some basic clock drivers (fixed rate, gatable,
divider, fixed factor, etc.) and allows the implementation of
custom clock drivers using struct clk_hw and

struct clk_ops

Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

» Provides a debugfs representation of the clock tree
» Is implemented in drivers/clk

Device driver

Uses the public clock API
clk_get(), clk_put()

clk_prepare(), clk_unprepare()

clk_enable(), clk_disable()
clk_get_rate(), etc.

>
>

Uses the
clk_ops
operations
Clock framework

Clock driver
fixed-rate
Clock driver
gate

Clock driver

Describes:

- Clocks and their relations

- Which clocks are needed
for the different devices

Device Tree

>
i mux

Clock driver
der

N Clock driver
foo

N Clock driver
bar

Provided by
the base clock
framework

Provided by
the SoC code

» Another goal of the ARM cleanup is to have less code in
arch/arm and create proper drivers and related

infrastructures.
» For example
IRQ controller drivers drivers/irqchip/
Timer drivers drivers/clocksource/
PCl host controller drivers drivers/pci/host/
Clock drivers drivers/clk/
Pinmux drivers drivers/pinctrl/

Basic
"initialization"
Device Tree C file Timer
(SoC and board) T driver
basic header
files
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/
Serial port
IRQ controller earlyprintk driver
driver support (already existing
8250 driver)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/

Went into Linux 3.6, 10 patches

Basic
"initialization"
Device Tree C file Timer Pinctrl
(SoC and board) + driver driver
basic header
files
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/ drivers/pinctrl/
Serial port
IRQ controller earlyprintk driver GPIO
driver support (already existing driver
8250 driver)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/
Address
decoding
code
(Marvell specific)

arch/arm/mach-mvebu/

Went into Linux 3.7, 35 patches
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.con 27/32

Ceoie SATA support
“initialization” IS
Device Tree Cfile Timer Pinctrl only ata
(SoC and board) + driver driver
bsic header SORGTR
existing driver,
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/ drivers/pinctrl/ eobenbinding
Serial port ”stl‘"""‘
IRQ controller earlyprintk driver GPIO kT
driver support (already existin: driver
PP 8250ydriver) ¢ (il
new)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/
Address Coherency
decoding Clock support
code L2 cache support drivers SMP support
and tree (Marvell
(Marvell specific) specific)
arch/arm/mach-mvebu/ arch/arm/mm/ drivers/clk/ arch/ar h b arch/arr h b

Went into Linux 3.8, 99 patches

— . SATA support SDIO support
“initialization" driver existing driver, existing driver,
R e pinctr! only DTS data only DT binding
(S0C and board) + driver
Ce=By Local timer XOR support USB support
support existing driver, existing driver,
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/ drivers/pinctrl/ enviCTEinding) CIfEy B CEED
1RQ controller RTC support
driver Network existing driver,
Serial port g
T s . driver only DTS data
support (already existing driver
o 8250 driver) (e
new)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/
Address Coherency
decoding Clock ispat PCle driver
code L2 cache support drivers SMP support
and tree (Marvell ‘“”"P'e;e'y
(Marvell specific) specific) new)
arch/arm/mach-mvebu/ arch/arn/m/ drivers/clk/ ar bu/ drivers/pci/host/

Hopefully going in 3.9 :-)

» Throw away the vendor BSP code. Most likely it is
completely crappy. You have to start from scratch.

» Start small, and send code piece by piece. Don't wait to
have everything fully working.

» Comply with the latest infrastructure changes: Device
Tree, clock framework, pinctrl subsystem. They are
mandatory.

» Read and post to the LAKML, Linux ARM Kernel Mailing
List

» Listen to reviews and comments, and repost updated
versions regularly.

» Look at recently merged sub-architectures: highbank,
mvebu, sunxi, bcm?2835, socfpga, etc.

Over the last year, ARM has gone from a constant
headache every merge window to an outstanding
citizen in the Linux community

Linus Torvalds, August 2012

Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Thanks to Gregory Clement (Free Electrons, working with me on
Marvell mainlining), Lior Amsalem and Maen Suleiman (Marvell)

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2013/fosdem/arm-support-
kernel/

http://free-electrons.com/pub/conferences/2013/fosdem/arm-support-kernel/
http://free-electrons.com/pub/conferences/2013/fosdem/arm-support-kernel/

