
FOSDEM 2013

ARM support in the
Linux kernel

Thomas Petazzoni
Free Electrons
thomas.petazzoni@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/32



Thomas Petazzoni

I Embedded Linux engineer and trainer at Free Electrons since
2008

I Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributing the kernel support for the new Armada 370
and Armada XP ARM SoCs from Marvell, under contract
with Marvell.

I Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/32

http://free-electrons.com


Agenda

I Background on the ARM architecture and Linux support

I The problems

I Changes in the ARM kernel support

I Getting the support for a SoC in mainline, story of Armada
370/XP

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/32



From the ARM architecture to a board

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/32



From the ARM architecture to a board, examples

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/32



Schematic view of a board

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/32



No standardization

I Beyond the ARM core itself, a lot of freedom is left to the
SoC vendor.

I There is no standard for the devices, the management of
clocks, pinmuxing, IRQ controllers, timers, etc.

I Note: some things like IRQ controllers and timers are now
standardized.

I There isn’t a mechanism to enumerate the devices available
inside the SoC. All devices have to be known by the kernel.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/32



“Old” ARM code organization in the Linux kernel

I arch/arm/
I arch/arm/{kernel,mm,lib,boot}/

The core ARM kernel. Contains the code related to the ARM
core itself (MMU, interrupts, caches, etc.). Relatively small
compared to the SoC-specific code.

I arch/arm/mach-<foo>/
The SoC-specific code, and board-specific code, for a given
SoC family.

I arch/arm/mach-<foo>/board-<bar>.c.
The board-specific code.

I drivers/

The device drivers themselves.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/32



Issue #1: too much code, lack of review

I Exploding number of ARM SoC, from different vendors

I The historical maintainer, Russell King, got overflowed by
the amount of code to review.

I Code started to flow directly from sub-architecture
maintainers directly to Linus Torvalds.

I Focus of each sub-architecture teams on their own
problems, no vision of the other sub-architectures.

I Consequences: lot of code duplication, missing common
infrastructures, maintenability problems, etc.

I Linus Torvalds, March 2011: Gaah. Guys, this whole ARM
thing is a f*cking pain in the ass.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/32



Issue #2: the need for multiplatform kernel

I On x86 PC, one can build a single kernel image (with many
modules) that boots and work on all PCs

I Good for distributions: they can ship a single kernel image.

I On ARM, it was impossible to build a single kernel that
would boot on systems using different SoCs.

I Issue for distributions: they have to build and maintain a
kernel image almost for each ARM hardware platform they
want to support.

I Need for ARM multiplatform support in the kernel.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/32



Change #1: arm-soc and maintainers

I A new maintainer team for the
ARM sub-architectures: Arnd
Bergmann (Linaro) and Olof
Johansson (Google)

I All the ARM SoC-specific code
goes through them, in a tree called
arm-soc
I They send the changes accumulated in arm-soc to Linus

Torvalds.

I Those maintainers have a cross-SoC view: detection of
things that should be factorized, consistency accross
SoC-specific code.

I Core ARM changes continue to go through Russell King.

I Role of the Linaro consortium

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/32



Change #2: Device Tree

I Most devices inside an ARM SoC and on the board cannot be
dynamically enumerated: they have to be statically
described.

I The old way of doing this description was by using C code,
registering platform_device structures for each hardware
device.

I This has been replaced by a hardware description done in
structure separated from the kernel, called the Device Tree.

I Also used on PowerPC, Microblaze, ARM64, Xtensa,
OpenRisc, etc.

I The Device Tree Source, in text format, gets compiled into a
Device Tree Blob, in binary format, thanks to the Device Tree
Compiler.

I Sources are stored in arch/arm/boot/dts

I At boot time, the kernel parses the Device Tree to instantiate
the available devices.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/32



Change #2: Before the Device Tree...

From arch/arm/mach-at91/at91sam9263_devices.c

static struct resource udc_resources[] = {

[0] = {

.start = AT91SAM9263_BASE_UDP,

.end = AT91SAM9263_BASE_UDP + SZ_16K - 1,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,

.end = NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,

.flags = IORESOURCE_IRQ,

},

};

static struct platform_device at91_udc_device = {

.name = "at91_udc",

.id = -1,

.dev = {

.platform_data = &udc_data,

},

.resource = udc_resources,

.num_resources = ARRAY_SIZE(udc_resources),

};

some_init_code() {

platform_device_register(&at91_udc_device);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/32



Change #2: SoC Device Tree example

/include/ "skeleton.dtsi"

/ {

compatible = "brcm,bcm2835";

model = "BCM2835";

interrupt-parent = <&intc>;

chosen {

bootargs = "earlyprintk console=ttyAMA0";

};

soc {

compatible = "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

ranges = <0x7e000000 0x20000000 0x02000000>;

[...]

intc: interrupt-controller {

compatible = "brcm,bcm2835-armctrl-ic";

reg = <0x7e00b200 0x200>;

interrupt-controller;

#interrupt-cells = <2>;

};

uart@20201000 {

compatible = "brcm,bcm2835-pl011", "arm,pl011", "arm,primecell";

reg = <0x7e201000 0x1000>;

interrupts = <2 25>;

clock-frequency = <3000000>;

status = "disabled";

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/32



Change #2: Board Device Tree example

/dts-v1/;

/memreserve/ 0x0c000000 0x04000000;

/include/ "bcm2835.dtsi"

/ {

compatible = "raspberrypi,model-b", "brcm,bcm2835";

model = "Raspberry Pi Model B";

memory {

reg = <0 0x10000000>;

};

soc {

uart@20201000 {

status = "okay";

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/32



Change #2: Device Tree inheritance

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/32



Change #2: Booting with a Device Tree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/32



Change #3: Multiplatform kernel

I Fits the need of distributions willing to build a single kernel
image that works on many ARM platforms.

I The SoC choice now contains a Allow multiple platforms to
be selected option, and all the SoC families that are
compatible with this can be compiled together in the same
kernel.

I There is still a split between ARMv4/ARMv5 on one side, and
ARMv6/ARMv7 on the other side.

I A lot of changes have been done in the ARM kernel to make
this possible: avoid two different platforms from defining the
same symbol, from using the same header names, no more
#ifdef but runtime detection instead.

I The support for all new SoCs must use the multiplatform
mechanism.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/32



Change #4: Pinctrl subsystem, introduction

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/32



Change #4: Pinctrl subsystem, old code

I Each ARM sub-architecture had its own pin-muxing code

I The API was specific to each sub-architecture

I A lot of similar functionality implemented in different ways

I The pin-muxing had to be done at the SoC level, and couldn’t
be requested by device drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/32



Change #4: Pinctrl subsystem, new subsystem

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/32



Change #5: Clocks

I In a System-on-Chip, all peripherals are driven by one or more
clocks.

I Those clocks are organized in a tree, and often are software
configurable.

I Since quite some time, the kernel had a simple API: clk_get,
clk_enable, clk_disable, clk_put that were used by
device drivers.

I Each ARM sub-architecture had its own implementation of
this API.

I Does not work for multiplatform kernels.

I Does not allow code sharing, and common mechanisms.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/32



Change #5: Common clock framework

I A proper common clock framework has been added in
kernel 3.4, released in May 2012

I This framework:
I Implements the clk_get, clk_put, clk_prepare,

clk_unprepare, clk_enable, clk_disable, clk_get_rate,
etc. API for usage by device drivers

I Implements some basic clock drivers (fixed rate, gatable,
divider, fixed factor, etc.) and allows the implementation of
custom clock drivers using struct clk_hw and
struct clk_ops

I Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

I Provides a debugfs representation of the clock tree
I Is implemented in drivers/clk

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/32



Change #5: Common clock framework architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/32



Change #6: More things in drivers/

I Another goal of the ARM cleanup is to have less code in
arch/arm and create proper drivers and related
infrastructures.

I For example
IRQ controller drivers drivers/irqchip/

Timer drivers drivers/clocksource/

PCI host controller drivers drivers/pci/host/

Clock drivers drivers/clk/

Pinmux drivers drivers/pinctrl/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/32



Armada 370/XP, step 1

Went into Linux 3.6, 10 patches

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/32



Armada 370/XP, step 2

Went into Linux 3.7, 35 patches

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/32



Armada 370/XP, step 3

Went into Linux 3.8, 99 patches

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/32



Armada 370/XP, step 4

Hopefully going in 3.9 :-)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/32



Getting an ARM SoC in mainline

I Throw away the vendor BSP code. Most likely it is
completely crappy. You have to start from scratch.

I Start small, and send code piece by piece. Don’t wait to
have everything fully working.

I Comply with the latest infrastructure changes: Device
Tree, clock framework, pinctrl subsystem. They are
mandatory.

I Read and post to the LAKML, Linux ARM Kernel Mailing
List

I Listen to reviews and comments, and repost updated
versions regularly.

I Look at recently merged sub-architectures: highbank,
mvebu, sunxi, bcm2835, socfpga, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/32



And now...

Over the last year, ARM has gone from a constant
headache every merge window to an outstanding

citizen in the Linux community

Linus Torvalds, August 2012

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/32



Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Thanks to Gregory Clement (Free Electrons, working with me on
Marvell mainlining), Lior Amsalem and Maen Suleiman (Marvell)

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2013/fosdem/arm-support-

kernel/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/32

http://free-electrons.com/pub/conferences/2013/fosdem/arm-support-kernel/
http://free-electrons.com/pub/conferences/2013/fosdem/arm-support-kernel/

