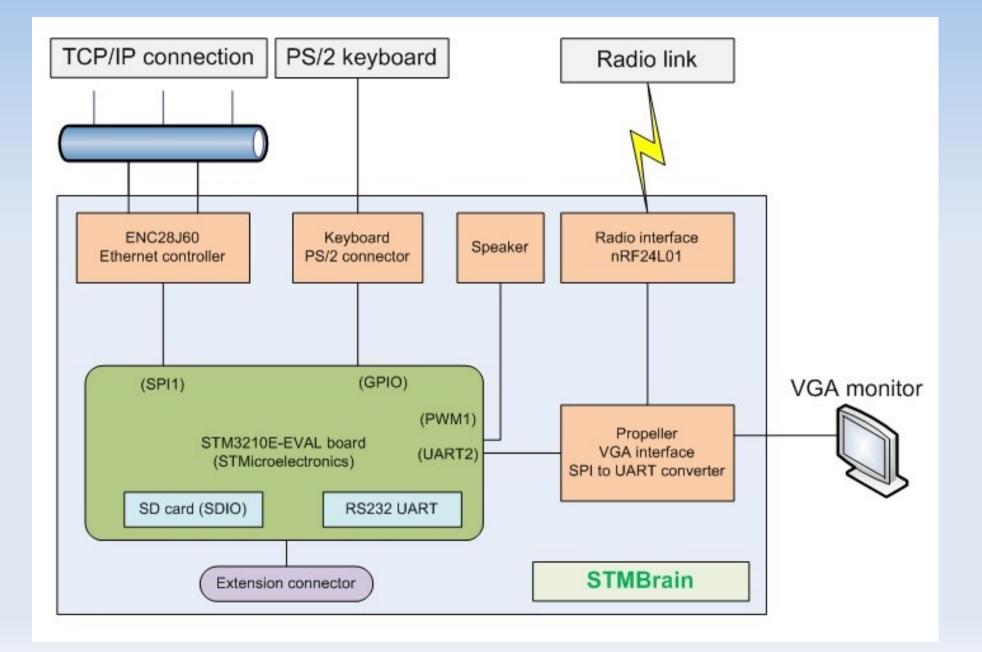


32-bit Cortex-M3 autonomous computer running eLua

- Motivation
- Overview
- Hardware design
- Software design
- Future development
- More information
- Questions

Motivation

- Hardware/software educational platform
 - Learn about hardware and software in parallel
 - Learn to cope with low resource systems
 - Simple, easy to understand structure
 - Easily hackable and extendable
 - Fully integrated (compiler, editor, help system)
 - Powerful, multi layer API
 - Good community support
- Programmable automation controller
 - Lower cost/lower power than PC/embedded Linux
 - Easier to program than a PC/embedded Linux
 - Easy to interface and extend


Overview

- What is eLuaBrain?
 - 32-bit completely autonomous computer
 - Low cost and low power
 - On-board Lua interpreter
 - Open source (MIT)
 - Built around a Cortex-M3 MCU
 - Direct video output (VGA), PS/2 keyboard input
 - Connectivity: Ethernet, UART, CAN, 2.4GHz radio
 - Storage: SD card
- eLuaBrain is not:
 - A complete operating system
 - Another Arduino clone

Overview

- Optimized for developing
 - Integrated Lua compiler and interpreter
 - Integrated text editor and help system
 - Integrated shell for simple operations
 - Multiple file systems (ROM, FAT, network (UDP))
 - Rich set of APIs
 - Low level access to all memory
 - High level APIs for peripherals
- TCP/IP stack and API optimized for low resource systems
- Very short (less than one second) boot time
- Easily portable to other microcontrollers

Block diagram

- Base board: STM3210E-EVAL from ST Microelectronics
 - MCU: STM32F103ZET6 (Cortex-M3 @ 72 Mhz)
 - Internal memory: 512k Flash/64k RAM
 - Serial bootloader (WIN!)
 - External memory: 1M RAM/64M NAND/16M NOR
 - Headers for all CPU pins (another WIN!)
 - Loads of peripherals (2xUART, USB, CAN, DAC, LCD)
- Drawbacks:
 - No Ethernet :(
 - Unable to act as a VGA video generator
 - Expensive (but OK for a prototype)
 - Too many peripherals. Really.

- Specific eLuaBrain hardware on a 'daughterboard'
- Wired Ethernet connection
 - ENC28J60 Ethernet controller with SPI interface
 - Relatively easy to use
 - 10Mbps only, but good enough
- Radio interface:
 - nRF24L01(+) from Nordic Semiconductor
 - Low power 2.4GHz transceiver chip
 - On-chip packet handling
 - Ideal for wireless automation
- Basic PWM sound generation

- Video interface
 - Propeller (P8X32A) based (can easily output VGA)
 - 640x480, 80x30 chars (8x16 chars), 16 colors
 - Original IBM PC CP437 codepage (ASCII art!)
 - Needs to be fast
 - Full screen editor needs to be fluid
 - Serial terminal emulators are too slow
- Solution: emulate video RAM (VRAM)
 - Propeller uses double buffering for video RAM
 - A buffer is displayed, the other one is read from STM32
 - STM32 outputs video data via DMA
- Easy Propeller firmware upgrade from the eLua shell

- Sound generator
 - Very basic (PWM output)
 - On-board I2S DAC not used
- Extension connector
 - Easy/fast expansion
 - Access to the main peripherals (SPI, I2C, timers, UART, ADC, GPIO)
- PS/2 decoding with GPIO pins
- Propeller converts SPI to UART for radio interface

- Core: eLua
 - Already has a well supported STM32 port
 - Fast and light
- It lacks some features needed by the Brain
 - No integrated editor or help system
 - Very basic TCP/IP stack, no UDP
 - No support for the ENC28J60 Ethernet controller
 - Output only over UART and TCP/IP (telnet)
 - No PS/2 support
- Fork the eLua tree
 - Implement new features as generic as possible
 - Improve existent features and push them back to eLua

The editor

- Simple, but functional
- Supports scrolling, long lines, go to line, block copy/paste
- Memory friendly (custom allocator)
- Integrated with the help system
- The help system
 - Global, per module or per function help
 - Generated from the same source as the official docs!
 - Accesible from anywhere (shell, editor, Lua interpreter)
 - Memory friendly (multi level indexes)
- Simple PS/2 protocol decoder, platform independent

- TCP/IP stack: major rewrite
 - Basic and buggy in eLua
 - Optional per socket buffers
 - Callbacks for 'new data' events
 - Memory friendly 'expect'-like interface
 - UDP support
 - Restartable (cable inserted/removed callbacks)
 - Platform independent ENC28J60 driver
- VGA console and terminal
 - Uses the internal VRAM (fast, but not portable)
 - Color support with ANSI escape sequence interpreter
 - Vastly improved term module

- Propeller firmware
 - Video generation objects adapted from Parallax forums
 - 'vram' object implemented from scratch
 - Handles double buffering
 - Loop unrolled SPI routines for speed
- Other changes
 - Remote file system (RFS) over UDP
 - Filemasks in shell (/mmc/*.lua)
 - New 'rm' command
 - More Lua patches:
 - Bit operations using the C syntax
 - Read-only strings (memory optimization)

The future

- Own PCB instead of daughterboard
- Most likely move to a Cortex-M4 core
- WiFi connectivity
- USB keyboard instead of PS/2
- Graphic mode VGA output (not just text)
- Video output to TV
- Loadable binary modules
- Better sound output
- Interactive debugger
- Improved editor
- Community support (docs, tutorials, reference code)

More information

• eLuaBrain blog:

http://eluabrain.blogspot.com

EluaBrain public repository:

git clone git://github.com/bogdanm/eLuaBrain.git

• eLua homepage:

http://www.eluaproject.net

• eLua mailing list:

https://lists.berlios.de/mailman/listinfo/elua-dev

eLua wiki:

http://wiki.eluaproject.net

Questions?