
OpenEmbedded and the Yocto Project:
Working together on a common Core

FOSDEM 2012

Paul Eggleton
Intel Open Source Technology Centre

 how we work together
 Let's start with a little history...

OpenEmbedded:

Embedded Linux build system
Uses "bitbake" and recipes to build packages and images
Founded in 2005
Grown since then to
 > 7,500 recipes, 300 machines, 20 distros

A number of forks
 Produced by small consulting firms and larger OSVs
 Molding OE into something commercially supportable
 Included Poky developed by OpenedHand
 OpenedHand was acquired by Intel and then in Oct 2010...

Yocto Project

Linux Foundation project w/ support from chip vendors and OSVs
Main project is the Poky build system
Other projects under the Yocto umbrella e.g.
 pseudo
 swabber
Trying to make it easier to build embedded Linux
Late 2010 - looking for a way to work more closely with OE

New OpenEmbedded structure

Split up into layers
A machine/distro neutral base to build on - OE-Core
Various other layers to enable machines, software and policies

Why split the metadata?

Just the recipes you need for your project
Customisations more visible & easier to manage
Each layer can be focused
 Smaller, reusable units
 Less stale metadata cruft mixed in
 Easy to see how well maintained it is
 Avoid mixing in machine-specific overrides

OE-Core

OE-Core created from Poky with machines removed, rename poky->core
 Archs: ARM, x86, x86-64, MIPS and PowerPC (+ PowerPC64)
 Only QEMU emulated machines
 Distro-less (some default policy)
 One X-based UI (Sato) for testing
 Mostly one version of each recipe (some exceptions, e.g. for GPLv2/v3)
Can build working system using just OE-Core (and bitbake) and nothing else
Pull model vs. push model of classic OE
 Patches sent to the mailing list, reviewed and merged from there
Yocto Project contributes directly to this core
 and then pulls changes into Poky from there
 same for bitbake
The basis of the collaboration between OE and Yocto

Layers

Types of layers - machine layer (BSP), software layer, distro layer
Overlaying recipes
 Can be done, but leads to maintenance problems
bbappends
 Add/change just the variables you need to

Some examples of common tasks via bbappend:

 DESCRIPTION = "My package with special option enabled"

 EXTRA_OECONF += "--enable-option"

 Custom /etc/network/interfaces:

 1) Add recipes-core/netbase_4.47.bbappend:

 ---- snip ----
 FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
 ---- snip ----

 2) Add recipes-core/netbase/netbase/interfaces

 FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

 SRC_URI += "custom-changes.patch"

Getting started - what should you do?

Create a customisation layer
Look for existing layers / recipes before starting your own

Creating a new layer

Structure:
 conf/layer.conf
 recipes-*/*/*
 README

 patches etc.

 # We have a conf and classes directory
 BBPATH := "${BBPATH}:${LAYERDIR}"

 # We have recipes-* directories, add to BBFILES
 BBFILES := "${BBFILES}
 ${LAYERDIR}/recipes-*/*/*.bb
 ${LAYERDIR}/recipes-*/*/*.bbappend"

 BBFILE_COLLECTIONS += "layername"
 BBFILE_PATTERN_layername := "^${LAYERDIR}/"

 BBFILE_PRIORITY_layername = "5"

 conf/layer.conf
 See Yocto Project developer's guide

Layer tools

Managing metadata across multiple layers can be tricky
Yocto Project is working on tools to do this

bitbake-layers

combo-layer

Current status

OE Layer index:
 16 BSP layers
 12 software layers (e.g. EFL, XFCE)
 5 distro layers
 meta-openembedded
New layers popping up all the time

What's next?

Yocto: Enhance layer tools further
 Start looking at what each layer does down at the variable level in bitbake-layers
 Web-based layer index (searchable)
 Recipe maintenance tools
OE:
 Improve OE documentation
 Bring more metadata over from OE-Classic (need maintainers!)

References

http://www.yoctoproject.org
http://www.openembedded.org
http://www.openembedded.org/wiki/LayerIndex

IRC (freenode): #yocto, #oe

A successful tool is one that was used to do
something undreamed of by its author.

Questions?

Photo credits:
* "Structure of the eye" by tompagenet
http://www.flickr.com/photos/tompagenet/95737053/
* "Cores" by Marcin Wichary
http://www.flickr.com/photos/mwichary/3209186260/
* "Lego Bits Box #1" by jemsweb
http://www.flickr.com/photos/jemsweb/4363545741/
* "Layer Cake" by OctopusHat
http://www.flickr.com/photos/octopushat/1433976199/
* "Cat eats cake" by kitty.green66
http://www.flickr.com/photos/53887959@N07/4985430800/
* "A Couple Layers" by Martin Cathrae
http://www.flickr.com/photos/suckamc/2882176630/
* "A successful tool is one that was used to do something undreamed of by its author." by katerha
http://www.flickr.com/photos/katerha/5746905652/
* "Sunset" by NeilsPhotography
http://www.flickr.com/photos/neilspicys/2349801988/

Talk contents © 2012 Intel Corporation
CC-By-SA

Any opinions stated in this talk are my own and not necessarily those of my employer (or anyone else).
All trademarks belong to their respective owners.

