
System Engineering

Linux Development Center

Making Wireless

Fosdem - ELC 2012

A new model for the system and devices
latency

Jean Pihet <j-pihet@ti.com>

v1.217 Feb 2012

System Engineering

Linux Development Center

Making Wireless

2

Introduction

Background

What is the 'latency' ?

There is some overhead when a part of the system goes to a low power mode in idle,
 both at suspend and resume times.
The allowed latency needs to be taken into account when deciding the next low
 power state.
'A part of the system' = SW, HW SoC, HW external.

 How to specify the allowed latency ?

 The PM QoS framework allows the kernel and user to specify the allowed latency.
 The framework calculates the aggregated constraint value and calls the
 registered platform-specific handlers in order to apply the constraints at lower level.

 Cf. Documentation/power/pm_qos_interface.txt for the available classes:
● PM QoS classes for cpu_dma_latency, network_latency, network_throughput.
● The per-device PM QoS framework provides the API to manage the per-device

 latency constraints.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

3

Introduction

Background

What is the point of controlling the latency ?

The point is to dynamically optimize the power consumption of all system components.

Knowing the allowed latency (from the constraints) and the expected worst-case latency
 allows to choose the optimum power state.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

4

Introduction

Terminology

● Latency : time to react to an external event, e.g. time spent to execute the handler
 code after an IRQ, time spent to execute driver code from an external wake-up
 event.

● HW latency : latency introduced by the HW to transition between power states.

● SW latency : time for the SW to execute low power transition code, e.g. IP block
 save & restore, caches flush/invalidate etc.

● System : 'everything needed to execute the kernel code', e.g. on OMAP3,
 system = CPU0 + CORE (main memory, caches, IRQ controller...).

● Per-device latency : latency of a device (or peripheral). The per-device PM QoS
 framework allows to control the devices states from the allowed devices latency.

● Cpuidle : framework that controls the CPUs low power states (=C-states), from the
 allowed system latency. Note : Is being abused to control the system state.

● PM runtime : framework that allows the dynamic switching of resources.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

5

Introduction

 OMAP SoC PM

 Dynamic and hierarchical PM

● Clock->Pwrdm->Voltdm->External Voltage Regulators

● Clock->DPLL->External Oscillators

 The HW latency depends on system settings

● The behavior of the voltage regulators and external oscillators depends on
 various system settings.

● The system settings can be dynamically controlled.

● E.g. OMAP <-> PMIC signals : SYS_CLKREQ, SYS_OFFMODE.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

6

ELC 2012 – A new model for system and devices latency

Source : OMAP3430 TRM,
public version

System Engineering

Linux Development Center

Making Wireless

7

ELC 2012 – A new model for system and devices latency

Source : TWL4030 Power Scripts [2]

System Engineering

Linux Development Center

Making Wireless

8

Current model

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

9

Current model : latency figures

ELC 2012 – A new model for system and devices latency

cpuidle latency figures

From [1] : measuring the timing and the current consumption (thanks to the TI PSI team!)
 leads to the following graph of the energy spent vs time :

System Engineering

Linux Development Center

Making Wireless

10

Current model : latency figures

ELC 2012 – A new model for system and devices latency

cpuidle latency figures (cont'd)

Derive some usable figures from the measurements :

• Identify the energy-wise interesting C-states and threshold values (C1, C3, C5, C9)

• Aggregate the timings results. From the various sources of data the following figures
 are derived for all C-states (timings in us).

Notes: produce the actual figures (to be used in the code) involves a lot of operations : interpolation,
intersection (linear algebra) etc.

System Engineering

Linux Development Center

Making Wireless

11

Current model : latency figures

ELC 2012 – A new model for system and devices latency

Inject the figures into the cpuidle framework :

System Engineering

Linux Development Center

Making Wireless

12

Current model : latency figures

ELC 2012 – A new model for system and devices latency

Power domains latency figures

From [1] :

Since cpuidle only manages the MPU and CORE the wake-up latency values for the
 other power domains must be measured separately, by adjusting the target states of
 the power domains (in /debug/pm_debug/xxxx_pwrdm/suspend).

 The significative power domains latencies are derived from the measurements as follows:

Notes:
 sys_clkreq and sys_offmode are not supported

System Engineering

Linux Development Center

Making Wireless

13

Current model : latency figures

ELC 2012 – A new model for system and devices latency

Inject the figures into the powercpuidle framework :

System Engineering

Linux Development Center

Making Wireless

14

Current model

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

15

Problems
There is no concept of 'overall latency'.

No interdependency between PM frameworks
Ex. on OMAP3 : cpuidle manages only a subset of the power domains (MPU, CORE).
Ex. on OMAP3 per-device PM QoS manages the other power domains.
No relation between the frameworks, each framework has its own

latency numbers.

 Some system settings are not included in the model
Mainly because of the (lack of) SW support at the time of the measurement session.
Ex. On OMAP3 : voltage scaling in low power modes, sys_clkreq, sys_offmode

and the interaction with the PowerIC.

Dynamic nature of the system settings
The measured numbers are for a fixed setup, with predefined system settings.
The measured numbers are constant.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

16

Problems (more of them!)
 Self-measuremente of OMAP devices (de)activate :
 Great idea, but ...

The code is not generic enough, only the omap_device code has the feature
implemented.

The self-measurement results are not used at all (excepted to issue a
 'New worst case (de)activate latency' debug message).

Measuring the various latencies is difficult
The measurement procedure needs to be re-run for every different HW

(or possibly SW) setup.
Measuring the latency of all power domains is difficult : take measurements,

derive energy graphs, calculate intersections, adapt to missing key parameters
etc.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

17

Solution proposal
 Overall latency calculation

We need a model which breaks down the overall latency into the latencies from
 every contributor :

latency = latency
SW

 + latency
HW

latency = latency
SW

 + latency
SoC

 + latency
External HW

Note : every latency factor might be divided into smaller factors. E.g. : On OMAP
 a DPLL can feed multiple power domains.

ELC 2012 – A new model for system and devices latency

latency
SW

=

time for the SW to
save/restore the

context of an IP block

latency
SoC

 =

time for the SoC HW to
change an IP block state.

Includes the Power
Domain state transition,
DPLL stop/relock etc.

latency
External HW

=

time to stop/restart the
external HW.

Ex : external crystal
oscillator, external
power supply etc.

System Engineering

Linux Development Center

Making Wireless

18

New model

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

19

Impact on the current code
 Reduce the measurement results into factors

From the model, derive the independent factors for the overall latency.
Differentiate the fixed factors from the variable ones (i.e. At HW level a power
 domain transition worst-case latency is fixed).

 Pass the latency data along with board-specific data
From the board files.
From (DT) Device Tree data.

Note : Which data to pass from board files or DT ? Cf. Discussions on l-a-k & l-o MLs.

 Introduce functions to calculate the devices and power domains
 worst case latency

Clean-up of the code that directly touches the HW settings which have an
 impact on the overall latency.
When a HW setting is touched, re-calculate the overall worst case latency.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

20

Impact on the current code
 Self-measuremente of devices (de)activate worst case latency

Ideally:
Implement the self-measurement in a generic way in devices runtime PM :
 in generic power domain code or in devices get/put functions.

Real world:

1. OMAP has its own implementation of clock/power/voltage domains

2. The generic power domain code has no provision for multiple power states,
 which OMAP is using (ON, INACTIVE, CSWR, OSWR, OFF), which prevents
 OMAP code for using it (for now).

 Question: How to integrate the full solution ?

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

21

Impact on the current code
 Self-measuremente of devices (de)activate worst case latency

 Question: How to integrate the full solution ?

=> Implement the features in logical steps:

1. provide a reference implementation using the OMAP code,

2. bring the concept of multiple power domains states in the
generic framework,

3. change OMAP code to use the generic power domains,

4. repeat 2-3 for clocks (hint : common clock framework) and voltages,

5. port the self-measurement feature in generic code (runtime PM)

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

22

Impact on the current code
 Self-measuremente of devices (de)activate worst case
 latency

Notes:

1. (De)activate a device can cover the overall latency by propagation through
 the clock/power/voltage domains.
 So use the clock, power and voltage domains and DPLLs use count field
 to differentiate the measurement of the device-only latency
 from the other factors,

2. The use count field needs to be accessible to runtime PM from the
 generic clock/power/voltage domains frameworks.

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

23

Next steps
 Start the discussions with the maintainers (here and on MLs)

● lkml, linux-pm
● linux-arm(-kernel), linux-omap

● Points to discuss :

. Generic clock/power/voltage domains implementation vs
OMAP specific code

. Proper use of the use count field to identify the device-only latency from
the propagated latency

. Identify the impact on the PM runtime latency measurement code

. (OMAP) What are the independent factors ? What are the settings which
have an impact on the latency ?

. (OMAP) How to pass the SoC and board specific data (board file, DT) ?

Write and submit code (!)
ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

24

Links

 Omappedia wiki

PM debug & profiling
http://www.omappedia.org/wiki/Power_Management_Debug_and_Profiling

[1] PM devices latency measurements
http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement

[2] TWL4030 Power Scripts
http://omappedia.org/wiki/TWL4030_power_scripts

Submitted patches and discussions on MLs

OMAP specific patches for per-device latency
http://www.spinics.net/lists/linux-omap/msg61692.html

 The slides for this presentation
are posted at [1]

ELC 2012 – A new model for system and devices latency

http://www.omappedia.org/wiki/Power_Management_Debug_and_Profiling
http://www.omappedia.org/wiki/Power_Management_Device_Latencies_Measurement
http://omappedia.org/wiki/TWL4030_power_scripts
http://www.spinics.net/lists/linux-omap/msg61692.html

System Engineering

Linux Development Center

Making Wireless

25

Thank you !

Questions ?

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

26

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

27

Back-up slides

ELC 2012 – A new model for system and devices latency

System Engineering

Linux Development Center

Making Wireless

28

Current model : latency figures

ELC 2012 – A new model for system and devices latency

cpuidle latency figures

From [1] : measuring the timing and the current consumption (thanks to the TI PSI team!)
 leads to the following graph of the energy spent vs time :

System Engineering

Linux Development Center

Making Wireless

29

Current model : latency figures

ELC 2012 – A new model for system and devices latency

cpuidle latency figures (cont'd)

Taking the minimum energy from the graph allows to identify the 4 energy-wise interesting
 C-states: C1, C3, C5, C9 and the threshold time for those C-states to be efficient.

Aggregated timings results

From the various sources of data the
 following figures are derived for all
 C-states (timings in us).

Notes:
 The power efficient C-states are identifed as C1, C3, C5, C7
 (1) When not measured, the threshold value equals to the next power efficient C-state
 (2) The threshold value is derived using the intersection of C3 and C4 in the graph
 (3) No sys_clkoff is supported, this value need to be corrected
 (4) Addition of HW and SW parts, using [2]
 (5) The threshold value calculation is the intersection of the lines in the graph, using linear algebra

System Engineering

Linux Development Center

Making Wireless

30

Current model : latency figures

ELC 2012 – A new model for system and devices latency

Inject the figures into the cpuidle framework :

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

