
Systems Management with Matahari
Zane Bitter
5 February 2012

Contents

Introducing Matahari

Matahari Agents

RPC Agent

Core Libraries

Clients

Applications

Matahari Shell

More Information

An introduction to the Matahari Project for developers, system admin-
istrators and the Open Source community.

Introducing Matahari

Matahari is a framework for remote systems management. Unlike
traditional methods of remote management (e.g. SSH), it is designed
for programmatic as well as manual access, and to work with large
numbers of machines as might be found in a modern “cloud” instal-
lation.

Matahari messages use the Advanced Message Queueing Protocol
(AMQP) as a transport. This allows for a very flexible and scalable
messaging architecture, with the ability to efficiently manage a large
network of machines. Matahari exposes remote APIs as objects with
properties, methods and events which are exported by the Qpid
Management Framework. QMF provides an object modelling layer
with remote method invocation and introspection. It is developed
as part of and runs atop Apache Qpid, a popular implementation of
AMQP.1 1 In the future we will investigate

breaking this dependency, hopefully to
the point where QMF could run on top
of other AMQP implementations.

In addition to the bus architecture of AMQP, QMF supports asyn-

AMQP

QMF

Matahari Core

Host Net Conf Svc RPC

Plugins

libvirt-qmf 
&c.

A
pa

ch
e 

Q
pi

d
M

at
ah

ar
i

Figure 1: High-level architecture of
Matahari and related projects.

mailto:zbitter@redhat.com
http://matahariproject.org


systems management with matahari 2

chronous method calls and publish-subscribe semantics for events.
These features also help make it very suitable for large-scale deploy-
ments.

Matahari Agents

Matahari ships with a number of agents that export useful APIs. At
present, Matahari includes Host (generic hardware information),
Network (network interfaces), Sysconfig (Puppet and Augeas config-
uration), Service (system services) and RPC agents. Many of these
agents support Windows as well as Linux hosts, so they can be used
on Windows-based virtualised guests.

More agents are planned, in particular for package management.
However, the Matahari project itself is not intended to be the source
of all system APIs. Rather, Matahari seeks to provide access to its
infrastructure so that developers from other projects can create third-
party agents to expose their own APIs.

RPC Agent

The RPC agent allows developers or system administrators to add
their own custom functionality to Matahari without the overhead of
developing a new agent in C++. The combination of Matahari and
RPC plugins offers functionality similar to MCollective.

The RPC agent exports any Python module stored in the directory
/usr/lib/matahari/plugins as a plugin object in QMF. Every pub-
lic, callable attribute of the module is exported as a method of the
plugin object. Parameters are passed and results returned in json

format.

import subprocess

def num_calls():
cl_args = ["asterisk", "-rx", "core show channels count"]
return subprocess.check_output(cl_args)

Figure 2: An example RPC plugin for
getting the number of calls from an
Asterisk server. The num_calls function
will be exported as a method of a QMF
class named after the module. See
Figure 7 for an example use.

Support for a Ruby backend would be a desirable future addition.

Core Libraries

The core of Matahari (see Figure 1) comprises code that creates the
skeleton structure of a Matahari agent and links it with QMF. Both
agents that ship with Matahari and external agents such as libvirt-
qmf share this same core.



systems management with matahari 3

Every Matahari agent shares common configuration files, com-
mand line options, environment variables and the like, to ensure that
the entire suite of agents running on a system need only be config-
ured once.

<schema package="org.matahariproject.testagent">
<class name="TestClass">

<property name="hostname" type="sstr" access="RO" desc="Hostname" index="y" />

<method name="sum" desc="Sum of two numbers">
<arg name="x" dir="I" type="int32" />
<arg name="y" dir="I" type="int32" />
<arg name="result" dir="O" type="int32" />

</method>
</class>

</schema>

Figure 3: The example agent schema.

XML 
Schema

Library

Glue

Glue

A
ge

nt
 C

or
e

S
ch

em
a

S
ke

le
to

n

QMFD-Bus Figure 4: Components of a Matahari
agent.

The API of an agent is described by a QMF Schema, which defines
events and the classes of objects and their properties and methods.
As shown in Figure 4, Matahari includes tools to transform the XML
schema into code to create the necessary classes in QMF. It also in-
cludes tools to (optionally) generate the skeleton of a D-Bus API from
the same schema, so that the same API can be accessed locally via
D-Bus on Linux systems.2 2 The included Host, Network, Syscon-

fig and Service APIs supply D-Bus as
well as QMF agents.

The underlying functionality of the API is usually encapsulated
in a shared library. It is envisioned that for most third-party agents
this will be an existing C API. In that case, the developer need only
write the glue code for each of the QMF and D-Bus agents to link the
underlying API to the generated schema.

https://cwiki.apache.org/qpid/qpid-management-framework.html#QpidManagementFramework-Schema


systems management with matahari 4

Developers of third-party agents should begin by forking the ex-
ample agent repository on GitHub and adapting it to their needs.3 3 For more information, read the Intro-

duction to Matahari for Developers.

Clients

Brokers

Agents

Console

Figure 5: Anatomy of a QMF system

In QMF terminology, client applications are known as “consoles”.
Consoles connect to agents through one or more message brokers.
Broker Federation can be used to set up a network of interconnected
brokers.

In a typical Matahari setup agents connect to a local broker run-
ning on the same host. The local broker may federate with an exter-
nal broker to allow centralised management of a group of machines.
In a virtualised environment, illustrated in Figure 6, local brokers on
the guests can federate with a broker running on the host through a
qemu vios-proxy tunnel.

Matahari installs its own broker, which is simply a thin wrapper
around the Apache Qpid broker to read Matahari-specific configura-
tion. In this way, Matahari can be kept completely separate from any
other use of AMQP in the network.4 4 By default, the Matahari broker uses

its own TCP port, 49000, to listen for
incoming connections.

There are QMF console libraries available in C++, Python and
Ruby. In addition, there is a Matahari API in Python under active
development.5 This API simplifies common systems-management 5 A preview is available now in the

Matahari Git repository.tasks that are specific to Matahari rather than generic to QMF, such
as selecting agents by host. It also provides an easy mechanism for
using asynchronous QMF operations to deal with many agents in
parallel.

Applications

Matahari is already in use by the Pacemaker Cloud project to re-
motely monitor the state of system services using push notifications.

Hypervisor
Guest

Guest

Figure 6: A typical Matahari QMF Bus
topology in a virtualised environment.

https://github.com/matahari/matahari-agent-example
https://github.com/matahari/matahari-agent-example
https://github.com/downloads/zaneb/presentations/matahari-for-developers-7db27de.pdf
https://github.com/downloads/zaneb/presentations/matahari-for-developers-7db27de.pdf
http://pacemaker-cloud.org/


systems management with matahari 5

The Cloud Policy Engine acts as a Matahari console to control and
monitor services.

Matahari Shell

The Matahari Shell (mhsh) is a wrapper around the Matahari Python
API.6 It allows the user to interact with remote agents using a command- 6 Like the API, the shell is still under

active development and is subject to
change, but available to preview now.

line interface,7 or to drive them from a script.

7 The interface should feel at least
somewhat familiar to anyone who has
used Cisco’s IOS, or any of the many
similar command lines.

The strategy for using the shell is to select a subset of the available
objects and perform operations on the whole group. The user selects
an object class and, optionally, a list of hosts and property values on
which to filter. The shell inherits from the API the ability to dispatch
method calls to every selected object in parallel.

$ mhsh
mhsh> list hosts
ast1
ast2
mhsh> select class package org.matahariproject.rpc.plugin asterisk
mhsh [org.matahariproject.rpc.plugin:calls]> call num_calls
OK (0) - {u’result’: ’"0 active channels\\n0 active calls\\n0 calls processed\\n"’}
OK (0) - {u’result’: ’"0 active channels\\n0 active calls\\n0 calls processed\\n"’}
mhsh [org.matahariproject.rpc.plugin:calls]> select class Host
mhsh [org.matahariproject:Host]> select host ast1
mhsh (host)[org.matahariproject:Host]> get load
{u’1’: 0.0, u’5’: 0.01, u’15’: 0.05}
mhsh (host)[org.matahariproject:Host]> quit
$

Figure 7: An example shell session.
First we call the num_calls method
from the RPC plugin of Figure 2 on
all hosts where it is present. Then we
select a single host and get its load
average from the Host agent.

More Information

Here is a list of other places you can go to get more information and
participate in the project:

• The project home page is http://matahariproject.org/.

• You can find the code on GitHub.

• Patches and project-related discussions are posted to the Matahari
mailing list.

• Developers and users hang out in the #matahari IRC channel on
OFTC.

http://matahariproject.org/
https://github.com/matahari/matahari
https://fedorahosted.org/mailman/listinfo/matahari
https://fedorahosted.org/mailman/listinfo/matahari
http://www.oftc.net/

	Introducing Matahari
	Matahari Agents
	Core Libraries
	Clients
	More Information

